Inventory Analysis on a Single-Echelon Supply Chain System by Considering Carbon Emissions

Author(s):  
P. S. Murdapa ◽  
I. N. Pujawan ◽  
P. D. Karningsih ◽  
A. H. Nasution
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Zheng Liu ◽  
Bin Hu ◽  
Bangtong Huang ◽  
Lingling Lang ◽  
Hangxin Guo ◽  
...  

Affected by the Internet, computer, information technology, etc., building a smart city has become a key task of socialist construction work. The smart city has always regarded green and low-carbon development as one of the goals, and the carbon emissions of the auto parts industry cannot be ignored, so we should carry out energy conservation and emission reduction. With the rapid development of the domestic auto parts industry, the number of car ownership has increased dramatically, producing more and more CO2 and waste. Facing the pressure of resources, energy, and environment, the effective and circular operation of the auto parts supply chain under the low-carbon transformation is not only a great challenge, but also a development opportunity. Under the background of carbon emission, this paper establishes a decision-making optimization model of the low-carbon supply chain of auto parts based on carbon emission responsibility sharing and resource sharing. This paper analyzes the optimal decision-making behavior and interaction of suppliers, producers, physical retailers, online retailers, demand markets, and recyclers in the auto parts industry, constructs the economic and environmental objective functions of low-carbon supply chain management, applies variational inequality to analyze the optimal conditions of the whole low-carbon supply chain system, and finally carries out simulation calculation. The research shows that the upstream and downstream auto parts enterprises based on low-carbon competition and cooperation can effectively manage the carbon footprint of the whole supply chain through the sharing of responsibilities and resources among enterprises, so as to reduce the overall carbon emissions of the supply chain system.


2021 ◽  
Vol 13 (4) ◽  
pp. 1740
Author(s):  
Cheng Che ◽  
Xiaoguang Zhang ◽  
Yi Chen ◽  
Liangyan Zhao ◽  
Zhihong Zhang

By establishing a two-level symbiotic supply chain system consisting of one supplier and one manufacturer, we use Stackelberg method to analyze the optimal price and revenue model of supplier and manufacturer in the symbiotic supply chain under two power structures in which the supplier and manufacturer are dominant respectively, and analyze the influence of the degree of symbiosis and power structure on the model. Through comparative analysis, we find that: There is a relationship between the income level and the degree of symbiosis in the symbiotic supply chain. The change of power structure will affect the relative benefits of suppliers and manufacturers in the symbiotic supply chain. The manufacturer’s expected unit product revenue will affect the supply chain revenue when the manufacturer is dominant. Finally, the sensitivity analysis of relevant parameters is carried out through an example analysis, and the validity of the conclusion is verified. This paper has a guiding significance for the behavior of enterprises in the cogeneration supply chain.


2006 ◽  
Vol 22 (5-6) ◽  
pp. 557-565 ◽  
Author(s):  
Mustafa Özbayrak ◽  
Theopisti C. Papadopoulou ◽  
Efstratios Samaras

2014 ◽  
Vol 156 ◽  
pp. 332-345 ◽  
Author(s):  
Bhaba R. Sarker ◽  
Ratkrit Rochanaluk ◽  
Huizhi Yi ◽  
Pius J. Egbelu

Sign in / Sign up

Export Citation Format

Share Document