Drug-induced Chances In The Inverse Power-law Distributions And I/F Power Spectra Of Fetal Breathing Dynamics

Author(s):  
P.Y. Cheng ◽  
J.A. Decena ◽  
H.H. Szeto
1976 ◽  
Vol 29 (3) ◽  
pp. 201 ◽  
Author(s):  
RG Milne

Power spectrum measurements of interplanetary scintillation at 408 MHz show that an inverse power law spectrum provides the best description for all scintillating radio sources. The inverse power law index is reasonably constant at ~ 2�4 for solar elongation angles 8 > 10�, and this agrees well with spacecraft observations. For 8 < 10� the index apparently decreases with decreasing 8, and this appears to be consistent with recent strong scattering theory. A Bessel analysis attempted in order to detect Fresnel structure proved unsuccessful because of noise on the power spectra.


1992 ◽  
Vol 263 (1) ◽  
pp. R141-R147 ◽  
Author(s):  
H. H. Szeto ◽  
P. Y. Cheng ◽  
J. A. Decena ◽  
Y. Cheng ◽  
D. L. Wu ◽  
...  

The dynamic pattern of fetal breathing was studied in 17 fetal lambs with chronically implanted electromyographic electrodes in the diaphragm. The instantaneous breathing rate time series appeared similar on different time scales, with clusters of faster breathing rates interspersed with periods of relative quiescience, suggesting self-similarity. Distribution histograms of the interbreath intervals (IBIs) showed log-normal distribution for IBIs less than 1 s and inverse power-law distribution for IBIs greater than 1 s. The ratio of log-normal distribution to power-law distribution varied from approximately 2 at 102 days to approximately 30 by 130 days of gestation. Fast Fourier transform of the breathing rate time series revealed 1/f beta power spectra for all animals, with beta increasing linearly from 0.43 to 0.88 between 102 and 139 days. Studies in the newborn lamb showed further maturation in both the distribution characteristics of the IBIs, as well as in the 1/f power spectra, with beta approaching 1.0 at 2 days after birth. The inverse power-law relationship in the distribution of the IBIs, together with the 1/f beta power spectra, indicate scale invariance and suggest that fractal mechanisms are involved in the regulation of fetal breathing.


Fractals ◽  
2009 ◽  
Vol 17 (03) ◽  
pp. 333-349 ◽  
Author(s):  
A. M. SELVAM

Dynamical systems in nature exhibit self-similar fractal fluctuations and the corresponding power spectra follow inverse power law form signifying long-range space-time correlations identified as self-organized criticality. The physics of self-organized criticality is not yet identified. The Gaussian probability distribution used widely for analysis and description of large data sets underestimates the probabilities of occurrence of extreme events such as stock market crashes, earthquakes, heavy rainfall, etc. The assumptions underlying the normal distribution such as fixed mean and standard deviation, independence of data, are not valid for real world fractal data sets exhibiting a scale-free power law distribution with fat tails. A general systems theory for fractals visualizes the emergence of successively larger scale fluctuations to result from the space-time integration of enclosed smaller scale fluctuations. The model predicts a universal inverse power law incorporating the golden mean for fractal fluctuations and for the corresponding power spectra, i.e., the variance spectrum represents the probabilities, a signature of quantum systems. Fractal fluctuations therefore exhibit quantum-like chaos. The model predicted inverse power law is very close to the Gaussian distribution for small-scale fluctuations, but exhibits a fat long tail for large-scale fluctuations. Extensive data sets of Dow Jones index, human DNA, Takifugu rubripes (Puffer fish) DNA are analyzed to show that the space/time data sets are close to the model predicted power law distribution.


2006 ◽  
Author(s):  
Gerardo Ramirez ◽  
Sonia Perez ◽  
John G. Holden

Optica ◽  
2015 ◽  
Vol 2 (10) ◽  
pp. 877 ◽  
Author(s):  
Amy L. Oldenburg ◽  
Xiao Yu ◽  
Thomas Gilliss ◽  
Oluwafemi Alabi ◽  
Russell M. Taylor ◽  
...  

2013 ◽  
Vol 20 (01) ◽  
pp. 1350002 ◽  
Author(s):  
F. Giraldi ◽  
F. Petruccione

The exact dynamics of a quantum damped harmonic oscillator coupled to a reservoir of boson modes has been formally described in terms of the coupling function, both in weak and strong coupling regime. In this scenario, we provide a further description of the exact dynamics through integral transforms. We focus on a special class of spectral densities, sub-ohmic at low frequencies, and including integrable divergencies referred to as photonic band gaps. The Drude form of the spectral densities is recovered as upper limit. Starting from special distributions of coherent states as external reservoir, the exact time evolution, described through Fox H-functions, shows long time inverse power law decays, departing from the exponential-like relaxations obtained for the Drude model. Different from the weak coupling regime, in the sub-ohmic condition, undamped oscillations plus inverse power law relaxations appear in the long time evolution of the observables position and momentum. Under the same condition, the number of excitations shows trapping of the population of the excited levels and oscillations enveloped in inverse power law relaxations. Similarly to the weak coupling regime, critical configurations give arbitrarily slow relaxations useful for the control of the dynamics. If compared to the value obtained in weak coupling condition, for strong couplings the critical frequency is enhanced by a factor 4.


Sign in / Sign up

Export Citation Format

Share Document