Computer simulation of action potential duration inhomogeneities in cardiac hypoxia, role of the ATP-sensitive potassium current

Author(s):  
J.M. Ferrero ◽  
V. Torres ◽  
J. Saiz ◽  
J.M. Ferrero ◽  
N.V. Thakor
Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Scott Marrus ◽  
Steven Springer ◽  
Rita Martinez ◽  
Edward Dranoff ◽  
Rebecca Mellor ◽  
...  

Abnormalities of a key repolarizing cardiac potassium current, the fast transient outward potassium current, I to,f , are associated with both heart failure and congenital arrhythmia syndromes. However, the precise role of I to,f in shaping action potential waveforms remains unclear. This study was designed to define the functional role of the fast transient outward potassium current, I to,f , in shaping action potentials in human iPSC-derived cardiomyocytes (iPSC-CMs). Most iPSC-CMs (29 of 43 cells) demonstrated spontaneous electrical activity, slow upstroke velocity (63±71 V/s), a wide range of action potential durations (APD90 = 860±722 ms) and heterogeneous action potential waveforms. Using dynamic current clamp, a modeled human ventricular inwardly rectifying K + current, I K1 , was introduced into iPSC-CMs, resulting in silencing of spontaneous activity, hyperpolarization of the resting membrane potential (RMP = -90±3 mV), increased peak upstroke velocity (dV/dt = 346±71 V/s) and decreased APD90 (420±211 ms) to values similar to those recorded in isolated adult human ventricular myocytes (RMP = -84±3 mV, dV/dt = 348±101 V/s and APD90 = 468±133 ms, all p>0.05). Importantly, a ventricular-like action potential waveform was observed in 25 of the 26 cells studied following the dynamic clamp addition of I K1 . Using these cells as a model of human ventricular myocytes, further dynamic current clamp experiments introduced a modeled human fast transient outward K + current, I to,f , and revealed that increasing in the amplitude of I to,f results in an increase in the phase 1 notch and a progressive shortening of the action potential duration in iPSC-CMs. Together, the experiments here demonstrate that combining human iPSC-CMs with the power of the dynamic current clamp technique to modulate directly and precisely the “expression” of individual ionic currents provides a novel and quantitative approach to defining the roles of specific ionic conductances in regulating the excitability of human cardiomyocytes.


1997 ◽  
Vol 272 (6) ◽  
pp. H2815-H2825 ◽  
Author(s):  
G. J. Fahy ◽  
I. Efimov ◽  
Y. Cheng ◽  
G. A. Kidwell ◽  
D. Van Wagoner ◽  
...  

We investigated whether atrioventricular (AV) nodal facilitation is the result of distal AV nodal action potential shortening. Atrial and bundle of His (H) electrograms and microelectrode recordings from proximal and distal AV nodal cells were analyzed in eight superfused rabbit AV node preparations in response to two pacing protocols. In the facilitation protocol, an atrial extrastimulus (A3) was preceded by an atrial impulse (A2) introduced 300, 200, 150, or 125 ms after 30 basic beats (A1). The preexcitation protocol differed from the facilitation protocol by the addition of a premature His depolarization (h2) such that the H1-h2 interval was shorter than the H1-H2 interval. Conduction curves (A3-H3 vs. H2-A3, h2-A3, and A2-A3 intervals) were constructed. Facilitation was demonstrated in all preparations when H2-A3 was used (P = 0.02) but not in the A2-A3 format. Compared with facilitation at the same A1-A2 intervals, preexcitation, despite shortening the distal cellular action potential duration, resulted in longer A3-H3 delays (P = 0.002), shorter A2-A3 intervals, and depression of the proximal nodal cellular response. Thus facilitation does not result from altered distal AV nodal characteristics and instead is a manifestation of an uncontrolled pacing protocol-dependent modulation of proximal AV nodal function.


1984 ◽  
Vol 62 (5) ◽  
pp. 596-599
Author(s):  
Julio Alvarez ◽  
Francisco Dorticós ◽  
Jesús Morlans

Experiments were performed to study the effects of hypoxia on the characteristics of premature action potentials of rabbit papillary muscles. At normal resting potential, the duration of the premature action potential at the shortest coupling intervals was always greater than that of the control response. As the coupling interval was increased beyond 150 ms, the duration of the premature action potential regained control values. In cells depolarized to −70 mV by KCl, early lengthening of the premature response was attenuated. After 60 min of hypoxia, recovery of action potential duration at normal and reduced resting potentials was accelerated. The maximum rate of depolarization and its reactivation time constant were not affected by 60 min of hypoxia. It is suggested that intracellular free Ca is important in the control of action potential duration via the outward background potassium current.


FACETS ◽  
2021 ◽  
Vol 6 ◽  
pp. 823-836
Author(s):  
William Joyce ◽  
Koen T. Scholman ◽  
Bjarke Jensen ◽  
Tobias Wang ◽  
Bastiaan J. Boukens

The role of α1-adrenergic receptors (α-ARs) in the regulation of myocardial function is less well-understood than that of β-ARs. Previous reports in the mouse heart have described that α1-adrenergic stimulation shortens action potential duration in isolated cells or tissues, in contrast to prolongation of the action potential reported in most other mammalian hearts. It has since become appreciated, however, that the mouse heart exhibits marked variation in inotropic response to α1-adrenergic stimulation between ventricles and even individual cardiomyocytes. We investigated the effects of α1-adrenergic stimulation on action potential duration at 80% of repolarization in the right and left ventricles of Langendorff-perfused mouse hearts using optical mapping. In hearts under β-adrenergic blockade (propranolol), phenylephrine or noradrenaline perfusion both increased action potential duration in both ventricles. The increased action potential duration was partially reversed by subsequent perfusion with the α-adrenergic antagonist phentolamine (1 μmol L−1). These data show that α1-receptor stimulation may lead to a prolonging of action potential in the mouse heart and thereby refine our understanding of how action potential duration adjusts during sympathetic stimulation.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Jidong Fu ◽  
Adrienne Dennis

The inwardly rectifying potassium current (IK1), encode by Kir2 family, is responsible for maintaining the negative resting potential, and contributes to phase 3 repolarization of the cardiac action potential. IK1 was generally thought to suppress cardiac automaticity, while the suppression of IK1 in adult ventricular cardiomyocytes (CMs) could engineer bio-artificial pacemaker-like cells to spontaneously fire action potential. Our studies also showed that overexpressed the gene of Kir2.1 could facilitate the electrophysiological maturing of mouse and human embryonic stem cell-differentiated CMs (ESC-CMs), which have the high degree of automaticity with nearly 50% of cells that can spontaneously fire action potential. In this study, we extensively analyzed the electrophysiology of mouse and human ESC-CMs, and found that the maximum diastolic potential in spontaneously firing ESC-CMs, -72.1±1.3 mV in atrial cells and -75.0±2.1 mV in ventricular cells, were significantly more hyperpolarized than that in quiescent ESC-CMs (-64.4±2.1 mV in atrial cells and -67.1±3.2 mV in ventricular cells). Applying a small amount of IK1 to hyperpolarize the membrane potential could enable those quiescent ESC-CMs to spontaneously fire action potential, indicating the enhancement of cardiac automaticity, while a large amount of IK1 could quiet those spontaneously firing cells down. By combining computational and experimental analyses, we confirmed that the synergistic interaction of IK1 and pacemaker current (If) could efficiently regulate cardiac automaticity during the differentiation. Our studies disclosed a dose-dependent role of IK1 on cardiac automaticity that a small amount of IK1 enhances and a large amount of IK1 suppresses cardiac automaticity in ESC-CMs during differentiation.


2013 ◽  
Vol 57 ◽  
pp. 96-105 ◽  
Author(s):  
Fabien Brette ◽  
Erick Blandin ◽  
Christophe Simard ◽  
Romain Guinamard ◽  
Laurent Sallé

Sign in / Sign up

Export Citation Format

Share Document