upstroke velocity
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 6)

H-INDEX

17
(FIVE YEARS 0)

Author(s):  
Jari M. Tuomi ◽  
Loryn J. Bohne ◽  
Tristan W. Dorey ◽  
Hailey J. Jansen ◽  
Yingjie Liu ◽  
...  

Background Ibrutinib and acalabrutinib are Bruton tyrosine kinase inhibitors used in the treatment of B‐cell lymphoproliferative disorders. Ibrutinib is associated with new‐onset atrial fibrillation. Cases of sinus bradycardia and sinus arrest have also been reported following ibrutinib treatment. Conversely, acalabrutinib is less arrhythmogenic. The basis for these different effects is unclear. Methods and Results The effects of ibrutinib and acalabrutinib on atrial electrophysiology were investigated in anesthetized mice using intracardiac electrophysiology, in isolated atrial preparations using high‐resolution optical mapping, and in isolated atrial and sinoatrial node (SAN) myocytes using patch‐clamping. Acute delivery of acalabrutinib did not affect atrial fibrillation susceptibility or other measures of atrial electrophysiology in mice in vivo. Optical mapping demonstrates that ibrutinib dose‐dependently impaired atrial and SAN conduction and slowed beating rate. Acalabrutinib had no effect on atrial and SAN conduction or beating rate. In isolated atrial myocytes, ibrutinib reduced action potential upstroke velocity and Na + current. In contrast, acalabrutinib had no effects on atrial myocyte upstroke velocity or Na + current. Both drugs increased action potential duration, but these effects were smaller for acalabrutinib compared with ibrutinib and occurred by different mechanisms. In SAN myocytes, ibrutinib impaired spontaneous action potential firing by inhibiting the delayed rectifier K + current, while acalabrutinib had no effects on SAN myocyte action potential firing. Conclusions Ibrutinib and acalabrutinib have distinct effects on atrial electrophysiology and ion channel function that provide insight into the basis for increased atrial fibrillation susceptibility and SAN dysfunction with ibrutinib, but not with acalabrutinib.


Author(s):  
Sunil Jit R.J. Logantha ◽  
Xue J. Cai ◽  
Joseph Yanni ◽  
Caroline B. Jones ◽  
Robert S. Stephenson ◽  
...  

Background: Purkinje fibers (PFs) control timing of ventricular conduction and play a key role in arrhythmogenesis in heart failure (HF) patients. We investigated the effects of HF on PFs. Methods: Echocardiography, electrocardiography, micro-computed tomography, quantitative polymerase chain reaction, immunohistochemistry, volume electron microscopy, and sharp microelectrode electrophysiology were used. Results: Congestive HF was induced in rabbits by left ventricular volume- and pressure-overload producing left ventricular hypertrophy, diminished fractional shortening and ejection fraction, and increased left ventricular dimensions. HF baseline QRS and corrected QT interval were prolonged by 17% and 21% (mean±SEMs: 303±6 ms HF, 249±11 ms control; n=8/7; P =0.0002), suggesting PF dysfunction and impaired ventricular repolarization. Micro-computed tomography imaging showed increased free-running left PF network volume and length in HF. mRNA levels for 40 ion channels, Ca 2+ -handling proteins, connexins, and proinflammatory and fibrosis markers were assessed: 50% and 35% were dysregulated in left and right PFs respectively, whereas only 12.5% and 7.5% changed in left and right ventricular muscle. Funny channels, Ca 2+ -channels, and K + -channels were significantly reduced in left PFs. Microelectrode recordings from left PFs revealed more negative resting membrane potential, reduced action potential upstroke velocity, prolonged duration (action potential duration at 90% repolarization: 378±24 ms HF, 249±5 ms control; n=23/38; P <0.0001), and arrhythmic events in HF. Similar electrical remodeling was seen at the left PF-ventricular junction. In the failing left ventricle, upstroke velocity and amplitude were increased, but action potential duration at 90% repolarization was unaffected. Conclusions: Severe volume- followed by pressure-overload causes rapidly progressing HF with extensive remodeling of PFs. The PF network is central to both arrhythmogenesis and contractile dysfunction and the pathological remodeling may increase the risk of fatal arrhythmias in HF patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gerard A. Marchal ◽  
Maaike van Putten ◽  
Arie O. Verkerk ◽  
Simona Casini ◽  
Kayleigh Putker ◽  
...  

AbstractDuchenne muscular dystrophy (DMD) is a progressive neuromuscular disorder caused by loss of dystrophin. This lack also affects cardiac structure and function, and cardiovascular complications are a major cause of death in DMD. Newly developed therapies partially restore dystrophin expression. It is unclear whether this will be sufficient to prevent or ameliorate cardiac involvement in DMD. We here establish the cardiac electrophysiological and structural phenotype in young (2–3 months) and aged (6–13 months) dystrophin-deficient mdx mice expressing 100% human dystrophin (hDMD), 0% human dystrophin (hDMDdel52-null) or low levels (~ 5%) of human dystrophin (hDMDdel52-low). Compared to hDMD, young and aged hDMDdel52-null mice displayed conduction slowing and repolarisation abnormalities, while only aged hDMDdel52-null mice displayed increased myocardial fibrosis. Moreover, ventricular cardiomyocytes from young hDMDdel52-null animals displayed decreased sodium current and action potential (AP) upstroke velocity, and prolonged AP duration at 20% and 50% of repolarisation. Hence, cardiac electrical remodelling in hDMDdel52-null mice preceded development of structural alterations. In contrast to hDMDdel52-null, hDMDdel52-low mice showed similar electrophysiological and structural characteristics as hDMD, indicating prevention of the cardiac DMD phenotype by low levels of human dystrophin. Our findings are potentially relevant for the development of therapeutic strategies aimed at restoring dystrophin expression in DMD.


2021 ◽  
Vol 22 (3) ◽  
pp. 1265
Author(s):  
Jieyun Bai ◽  
Yijie Zhu ◽  
Andy Lo ◽  
Meng Gao ◽  
Yaosheng Lu ◽  
...  

Electrical remodelling as a result of homeodomain transcription factor 2 (Pitx2)-dependent gene regulation was linked to atrial fibrillation (AF) and AF patients with single nucleotide polymorphisms at chromosome 4q25 responded favorably to class I antiarrhythmic drugs (AADs). The possible reasons behind this remain elusive. The purpose of this study was to assess the efficacy of the AADs disopyramide, quinidine, and propafenone on human atrial arrhythmias mediated by Pitx2-induced remodelling, from a single cell to the tissue level, using drug binding models with multi-channel pharmacology. Experimentally calibrated populations of human atrial action po-tential (AP) models in both sinus rhythm (SR) and Pitx2-induced AF conditions were constructed by using two distinct models to represent morphological subtypes of AP. Multi-channel pharmaco-logical effects of disopyramide, quinidine, and propafenone on ionic currents were considered. Simulated results showed that Pitx2-induced remodelling increased maximum upstroke velocity (dVdtmax), and decreased AP duration (APD), conduction velocity (CV), and wavelength (WL). At the concentrations tested in this study, these AADs decreased dVdtmax and CV and prolonged APD in the setting of Pitx2-induced AF. Our findings of alterations in WL indicated that disopyramide may be more effective against Pitx2-induced AF than propafenone and quinidine by prolonging WL.


Author(s):  
Natalia S Torres

Our prior work has shown that Na+current (INa) affects sarcoplasmic reticular (SR) Ca2+release by activating early reverse of the Na+-Ca2+exchanger (NCX). The resulting Ca2+ entry primes the dyadic cleft, which appears to increase Ca2+channel coupling fidelity. It has been shown that the skeletalisoform of the voltage-gated Na+channel (Nav1.4) is the main tetrodotoxin(TTX)-sensitive Navisoform expressed in adult rabbit ventricular cardiomyocytes.Here I tested the hypothesis that it is also the principal isoform involved in the priming mechanism. Action potentials (AP) were evoked in isolated rabbit ventricular cells loaded with fluo-4, and simultaneouslyrecorded Ca2+transients before and after the application of either relatively low doses of TTX (100nM),the specific Nav1.4 inhibitor μ-Conotoxin GIIIB or the specific Nav1.1 inhibitor ICA 121430. While AP changes after the application of each drug reflected the relative abundance of each isoform, the effects of TTX and GIIIB on SR Ca2+ release (measured as the transient maximum upstroke velocity) were no different. Furthermore, this reduction in SR Ca2+ release wascomparable to the value that we obtained previously when total INawas inactivated with a ramp applied under voltage clamp. Finally, SR Ca2+ release was unaltered by the same ramp in the presence of TTX or GIIB. In contrast, application of ICA had no effect of SR Ca2+release. Theseresults suggest that Nav1.4 is the main Nav isoform involved in regulating the efficiency ofexcitation-contraction coupling in rabbit cardiomyocytes by priming the junction via activation of reverse-mode NCX.


Author(s):  
Jieyun Bai ◽  
Yijie Zhu ◽  
Andy Lo ◽  
Meng Gao ◽  
Yaosheng Lu ◽  
...  

Electrical remodelling as a result of the homeodomain transcription factor 2 (Pitx2)‐dependent gene regulation was linked to atrial fibrillation (AF) and AF patients with single nucleotide polymorphisms at chromosome 4q25 responded favorably to Class I antiarrhythmic drugs (AADs). The possible reasons behind this remain elusive. The purpose of this study was to assess the efficacy of AADs disopyramide, quinidine, and propafenone on human atrial arrhythmias mediated by Pitx2-induced remodelling, from a single cell to the tissue level, using drug binding models with multi-channel pharmacology. Experimentally calibrated populations of human atrial action potential (AP) models in both sinus rhythm (SR) and Pitx2-induced AF conditions were constructed by using two distinct models to represent morphological subtypes of AP. Multi-channel pharmacological effects of disopyramide, quinidine, and propafenone on ionic currents were considered. Simulated results showed that Pitx2-induced remodelling increased maximum upstroke velocity (dVdtmax) and conduction velocity (CV), and decreased AP duration (APD) and wavelength (WL). At the concentrations tested in this study, these AADs decreased dVdtmax and CV and prolonged APD in the setting of Pitx2-induced AF. Our findings of alterations in WL indicated that quinidine and disopyramide may be more effective against Pitx2-induced AF than propafenone by prolonging WL.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Marc D. Lemoine ◽  
Ingra Mannhardt ◽  
Kaja Breckwoldt ◽  
Maksymilian Prondzynski ◽  
Frederik Flenner ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Jan Trieschmann ◽  
Daniel Bettin ◽  
Moritz Haustein ◽  
Annette Köster ◽  
Marek Molcanyi ◽  
...  

Transplantation of stem cell-derived cardiomyocytes is one of the most promising therapeutic approaches after myocardial infarction, as loss of cardiomyocytes is virtually irreversible by endogenous repair mechanisms. In myocardial scars, transplanted cardiomyocytes will be in immediate contact with cardiac fibroblasts. While it is well documented how the electrophysiology of neonatal cardiomyocytes is modulated by cardiac fibroblasts of the same developmental stage, it is unknown how adult cardiac fibroblasts (aCFs) affect the function of embryonic stem cell-derived cardiomyocytes (ESC-CMs). To investigate the effects of aCFs on ESC-CM electrophysiology, we performed extra- and intracellular recordings of murine aCF-ESC-CM cocultures. We observed that spontaneous beating behaviour was highly irregular in aCF-ESC-CM cocultures compared to cocultures with mesenchymal stem cells (coefficient of variation of the interspike interval:40.5±15.2% versus9.3±2.0%,p=0.008) and that action potential amplitude and maximal upstroke velocity (Vmax) were reduced (amplitude:52.3±1.7 mV versus65.1±1.5 mV,Vmax:7.0±1.0 V/s versus36.5±5.3 V/s), while action potential duration (APD) was prolonged (APD50:25.6±1.0 ms versus16.8±1.9 ms,p<0.001; APD90:52.2±1.5 ms versus43.3±3.3 ms,p<0.01) compared to controls. Similar changes could be induced by aCF-conditioned medium. We conclude that the presence of aCFs changes automaticity and induces potentially proarrhythmic changes of ESC-CM electrophysiology.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Scott Marrus ◽  
Steven Springer ◽  
Rita Martinez ◽  
Edward Dranoff ◽  
Rebecca Mellor ◽  
...  

Abnormalities of a key repolarizing cardiac potassium current, the fast transient outward potassium current, I to,f , are associated with both heart failure and congenital arrhythmia syndromes. However, the precise role of I to,f in shaping action potential waveforms remains unclear. This study was designed to define the functional role of the fast transient outward potassium current, I to,f , in shaping action potentials in human iPSC-derived cardiomyocytes (iPSC-CMs). Most iPSC-CMs (29 of 43 cells) demonstrated spontaneous electrical activity, slow upstroke velocity (63±71 V/s), a wide range of action potential durations (APD90 = 860±722 ms) and heterogeneous action potential waveforms. Using dynamic current clamp, a modeled human ventricular inwardly rectifying K + current, I K1 , was introduced into iPSC-CMs, resulting in silencing of spontaneous activity, hyperpolarization of the resting membrane potential (RMP = -90±3 mV), increased peak upstroke velocity (dV/dt = 346±71 V/s) and decreased APD90 (420±211 ms) to values similar to those recorded in isolated adult human ventricular myocytes (RMP = -84±3 mV, dV/dt = 348±101 V/s and APD90 = 468±133 ms, all p>0.05). Importantly, a ventricular-like action potential waveform was observed in 25 of the 26 cells studied following the dynamic clamp addition of I K1 . Using these cells as a model of human ventricular myocytes, further dynamic current clamp experiments introduced a modeled human fast transient outward K + current, I to,f , and revealed that increasing in the amplitude of I to,f results in an increase in the phase 1 notch and a progressive shortening of the action potential duration in iPSC-CMs. Together, the experiments here demonstrate that combining human iPSC-CMs with the power of the dynamic current clamp technique to modulate directly and precisely the “expression” of individual ionic currents provides a novel and quantitative approach to defining the roles of specific ionic conductances in regulating the excitability of human cardiomyocytes.


2014 ◽  
Vol 306 (7) ◽  
pp. C705-C713 ◽  
Author(s):  
Haifeng Zheng ◽  
Kyung Sik Park ◽  
Sang Don Koh ◽  
Kenton M. Sanders

Interstitial cells of Cajal (ICC) generate slow waves in gastrointestinal (GI) muscles. Previous studies have suggested that slow wave generation and propagation depends on a voltage-dependent Ca2+ entry mechanism with the signature of a T-type Ca2+ conductance. We studied voltage-dependent inward currents in isolated ICC. ICC displayed two phases of inward current upon depolarization: a low voltage-activated inward current and a high voltage-activated current. The latter was of smaller current density and blocked by nicardipine. Ni2+ (30 μM) or mibefradil (1 μM) blocked the low voltage-activated current. Replacement of extracellular Ca2+ with Ba2+ did not affect the current, suggesting that either charge carrier was equally permeable. Half-activation and half-inactivation occurred at −36 and −59 mV, respectively. Temperature sensitivity of the Ca2+ current was also characterized. Increasing temperature (20–30°C) augmented peak current from −7 to −19 pA and decreased the activation time from 20.6 to 7.5 ms [temperature coefficient (Q10) = 3.0]. Molecular studies showed expression of Cacna1g (Cav3.1) and Cacna1h (Cav3.2) in ICC. The temperature dependence of slow waves in intact jejunal muscles of wild-type and Cacna1h −/− mice was tested. Reducing temperature decreased the upstroke velocity significantly. Upstroke velocity was also reduced in muscles of Cacna1h −/− mice, and Ni2+ or reduced temperature had little effect on these muscles. Our data show that a T-type conductance is expressed and functional in ICC. With previous studies our data suggest that T-type current is required for entrainment of pacemaker activity within ICC and for active propagation of slow waves in ICC networks.


Sign in / Sign up

Export Citation Format

Share Document