Biomechanical evaluation of unilateral maxillary defect restoration based on modularized finite element model of normal human skull

Author(s):  
Tie Ying ◽  
Wang Dong-mei ◽  
Wang Cheng-tao ◽  
Wu Yi-qun ◽  
Zhang Zhi-yuan

Human spine is one of the complex structure of the human body. It provides the link between upper and lower extremities of the human body. It is estimated that at least 30% of people in the middle age group from thirty to fifty years have some degree of disc degeneration. Disc degeneration disease can affect the quality of life and in certain individual it can cause severe chronic pain if left untreated. The low back pain associated with lumbar disc degeneration is usually generated from two causes which are abnormal motion instability and inflammation. Abnormal motion instability occurs when the annulus fibrosus are worn down and cannot absorb stress on the human spine effectively resulting in changes in movements along the vertebral segment. To understand lumbar disc problem, a thorough knowledge of the biomechanics of the normal human lumbar spine and a disc degenerated lumbar spine is of great importance. In this study, Computed tomography image of a 33 year old male is used. A three dimensional (3D) human lumbar spine (L3 to L5) is created and validated with literature. The finite element model was modified to degenerated disc and studied the biomechanics of the lumbar spine. Comparison of the biomechanics of normal human lumbar spine is done with the human lumbar spine with disc degeneration for different range of motion and different loads. The result shows that the pressure generated on degenerated disc is greater than normal disc. This work can be implemented and used for designing implants and also for intervertebral disc related analysis


1995 ◽  
Vol 12 (4) ◽  
pp. 735-742 ◽  
Author(s):  
GERALD KRABBEL ◽  
HERMANN APPEL

2006 ◽  
Vol 49 ◽  
pp. 227-234 ◽  
Author(s):  
Norio Inou ◽  
Michihiko Koseki ◽  
Koutarou Maki

This paper presents automated finite element modeling method and application to a biomechanical study. The modeling method produces a finite element model based on the multi-sliced image data adaptively controlling the element size according to complexity of local bony shape. The method realizes a compact and precise finite element model with a desired total number of nodal points. This paper challenges to apply this method to a human skull because of its intricate structure. To accomplish the application of the human skull, we analyze characteristics of bony shape for a mandible and a skull. Using the analytical results, we demonstrate that the proposed modeling method successfully generates a precise finite element model of the skull with fine structures.


Sign in / Sign up

Export Citation Format

Share Document