head injury criteria
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 13)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Aakash R

Abstract: In the case of an accident, inflatable restraints system plays a critical role in ensuring the safety of vehicle occupants. Frontal airbags have saved 44,869 lives, according to research conducted by the National Highway Traffic Safety Administration (NHTSA).Finite element analysis is extremely important in the research and development of airbags in order to ensure optimum protection for occupant. In this work, we simulate a head impact test with a deploying airbag and investigate the airbag's parameters. The airbag's performance is directly influenced by the parameters of the cushion such as vent area and fabric elasticity. The FEM model is analysed to investigate the influence of airbag parameter, and the findings are utilised to determine an optimal value that may be employed in the construction of better occupant safety systems. Keywords: airbag, finite element method, occupant safety, frontal airbag, vent size, fabric elasticity, head injury criteria


Author(s):  
Arnav Gupta

Abstract: A motorcycle helmet is the best protective headgear for the prevention of head injuries due to direct cranial impact. A finite element model based on realistic geometric features of a motorcycle helmet is established, and explicit finite element code is employed to simulate dynamic responses at different impact velocities. Peak acceleration and Head injury criterion values derived from the head form are used to assess the protective performance of the helmet. We have concluded that the dynamic responses of the helmet dramatically vary with impact velocity, as well as the mechanical properties of the outer shell and energy- absorbing liner. At low velocities e.g. 8.3 m/s, the shell stiffness and liner density should be relatively low to diminish head- contact force. At high velocity e.g. 11m/s, a stiffer shell and denser liner offer superior protection against head injuries. Different tests were performed in ansys explicit dynamics solver by taking different materials and calculating PLA, Head Injury Criteria, K.E, P.E, contact energy etc. The results obtained for different materials were then compared with easy other to draw the necessary conclusion’s. Keywords: Peak Linear Acceleration (PLA), Head Injury Criteria.


Author(s):  
Fang Wang ◽  
Zhen Wang ◽  
Lin Hu ◽  
Hongzhen Xu ◽  
Chao Yu ◽  
...  

This study evaluates the effectiveness of various widely used head injury criteria (HICs) in predicting vulnerable road user (VRU) head injuries due to road traffic accidents. Thirty-one real-world car-to-VRU impact accident cases with detailed head injury records were collected and replicated through the computational biomechanics method; head injuries observed in the analyzed accidents were reconstructed by using a finite element (FE)-multibody (MB) coupled pedestrian model [including the Total Human Model for Safety (THUMS) head–neck FE model and the remaining body segments of TNO MB pedestrian model], which was developed and validated in our previous study. Various typical HICs were used to predict head injuries in all accident cases. Pearson’s correlation coefficient analysis method was adopted to investigate the correlation between head kinematics-based injury criteria and the actual head injury of VRU; the effectiveness of brain deformation-based injury criteria in predicting typical brain injuries [such as diffuse axonal injury diffuse axonal injury (DAI) and contusion] was assessed by using head injury risk curves reported in the literature. Results showed that for head kinematics-based injury criteria, the most widely used HICs and head impact power (HIP) can accurately and effectively predict head injury, whereas for brain deformation-based injury criteria, the maximum principal strain (MPS) behaves better than cumulative strain damage measure (CSDM0.15 and CSDM0.25) in predicting the possibility of DAI. In comparison with the dilatation damage measure (DDM), MPS seems to better predict the risk of brain contusion.


Author(s):  
He Wu ◽  
Yong Han ◽  
Di Pan ◽  
Bingyu Wang ◽  
Hongwu Huang ◽  
...  

Compared with the young, the elderly (age greater than or equal to 60 years old) vulnerable road users (VRUs) face a greater risk of injury or death in a traffic accident. A contributing vulnerability is the aging processes that affect their brain structure. The purpose of this study was to investigate the injury mechanisms and establish head AIS 4+ injury tolerances for the elderly VRUs based on various head injury criteria. A total of 30 elderly VRUs accidents with detailed injury records and video information were selected and the VRUs’ kinematics and head injuries were reconstructed by combining a multi-body system model (PC-Crash and MADYMO) and the THUMS (Ver. 4.0.2) FE models. Four head kinematic-based injury predictors (linear acceleration, angular velocity, angular acceleration, and head injury criteria) and three brain tissue injury criteria (coup pressure, maximum principal strain, and cumulative strain damage measure) were studied. The correlation between injury predictors and injury risk was developed using logistical regression models for each criterion. The results show that the calculated thresholds for head injury for the kinematic criteria were lower than those reported in previous literature studies. For the brain tissue level criteria, the thresholds calculated in this study were generally similar to those of previous studies except for the coup pressure. The models had higher (>0.8) area under curve values for receiver operator characteristics, indicating good predictive power. This study could provide additional support for understanding brain injury thresholds in elderly people.


2021 ◽  
Vol 11 (3) ◽  
pp. 287
Author(s):  
Mateusz Dymek ◽  
Mariusz Ptak ◽  
Monika Ratajczak ◽  
Fábio A. O. Fernandes ◽  
Artur Kwiatkowski ◽  
...  

Brain damage is a serious economic and social burden. Contact sports such as American football, are one of the most common sources of concussions. The biomechanical response of the head–helmet system caused by dynamic loading plays a major role. The literature has focused on measuring the resultant kinematics that act on the head and helmet during tackles. However, few studies have focused on helmet validation tests, supported by recent findings and emerging numerical approaches. The future of helmet standards could benefit from insights at the level of injury mechanisms, using numerical tools to assess the helmets. Therefore, in this work, a numerical approach is employed to investigate the influence of intracranial pressure (ICP) on brain pathophysiology during and after helmeted impacts, which are common in American football. The helmeted impacts were performed at several impact locations according to the NOCSAE standard (configurations A, AP, B, C, D, F, R, UT). In order to evaluate the ICP levels, the αHEAD finite element head and brain model was combined with a Hybrid III-neck structure and then coupled with an American football helmet to simulate the NOCSAE impacts. In addition, the ICP level was analyzed together with the resulting HIC value, since the latter is commonly used, in this application and others, as the injury criterion. The obtained results indicate that ICP values exceed the common threshold of head injury criteria and do not correlate with HIC values. Thus, this work raises concern about applying the HIC to predict brain injury in American football direct head impacts, since it does not correlate with ICP predicted with the FE head model.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 29
Author(s):  
Marcus Dunn ◽  
Dyfan Davies ◽  
John Hart

In youth association football, the use of different size and/or mass footballs might represent a feasible intervention for addressing heading impact severity and player safety concerns. This study assessed the effects of football size and mass on head impacts based on defensive heading in youth football. Three-dimensional trajectories of U16 youth academy free kicks were modelled to derive three impact trajectories, representing defensive heading in youth football. Three football models (standard: S5, standard-light: S5L, and small: S4) impacted an instrumented headform; Head Injury Criterion (HIC15) and Rotational Injury Criterion (RIC15) were calculated. For headform impacts, S4 and S5L footballs yielded lower HIC15 magnitudes than S5 footballs. Further, S4 footballs yielded lower HIC15 and lower RIC15 magnitudes than S5 and S5L footballs. Initial findings indicated that smaller, S4 footballs reduced linear and rotational head injury criteria for impacts representative of defensive heading in youth football.


2019 ◽  
Vol 20 (sup2) ◽  
pp. S189-S192
Author(s):  
Marc van Slagmaat ◽  
Matthew B. Panzer ◽  
Bengt Pipkorn ◽  
Becky Mueller

2019 ◽  
Vol 18 (3) ◽  
pp. 557-566
Author(s):  
Mohammed Rajik Khan ◽  
Atul Sonawane

Purpose This paper aims to present 3D finite element (FE) simulations of impact loading on a construction safety helmet over a headform to improve the ventilation slots profile in helmet design. Design/methodology/approach Impact response on headforms in three different studies considering ventilation slots of varied profiles and dimensions in helmets with rectangular elliptical and circular slots is compared and analysed. Head injury criteria (HIC) and safety regulations from past literature have been considered to evaluate the impact responses. Findings Simulation results show that a helmet with rectangular ventilation slots achieves a lowest peak impact force of 5941.3 N for a slot area of 170 mm2 as compared to elliptical and circular slots. Research limitations/implications Ventilation slots of simple geometry (rectangular, elliptical and circular) have been considered in this work. Other/complex geometry slots can also be chosen to predict its effect during impact response on a helmet–headform model. Biofidelic head–neck FE model can be developed to achieve precise results. Practical implications The presented work gives a clear idea to design engineers for the selection of ventilation slot profiles to design a construction safety helmet. Social implications Construction safety (CS) helmets are used to reduce injuries on heads of workers at construction sites in the event of free-falling objects. Rectangular ventilation slots in CS helmets as suggested in the work may reduce the risk of injury. Originality/value Results are found in good agreement with the past numerical simulation of impact response on a construction safety helmet over a validated biofidelic head FE model.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Yu She ◽  
Hai-Jun Su ◽  
Deshan Meng ◽  
Cheng Lai

Abstract To reduce injury in physical human–robot interactions (pHRIs), a common practice is to introduce compliance to joints or arm of a robotic manipulator. In this paper, we present a robotic arm made of parallel guided beams whose stiffness can be continuously tuned by morphing the shape of the cross section through two four-bar linkages actuated by servo motors. An analytical lateral stiffness model is derived based on the pseudo-rigid-body model and validated by experiments. A physical prototype of a three-armed manipulator is built. Extensive stiffness and impact tests are conducted, and the results show that the stiffness of the robotic arm can be changed up to 3.6 times at a morphing angle of 37 deg. At an impact velocity of 2.2 m/s, the peak acceleration has a decrease of 19.4% and a 28.57% reduction of head injury criteria (HIC) when the arm is tuned from the high stiffness mode to the low stiffness mode. These preliminary results demonstrate the feasibility to reduce impact injury by introducing compliance into the robotic link and that the compliant link solution could be an alternative approach for addressing safety concerns of physical human–robot interactions.


Sign in / Sign up

Export Citation Format

Share Document