Cerebral near-infrared spectroscopy analysis in preterm infants with intraventricular hemorrhage

Author(s):  
Ying Zhang ◽  
G. S. H. Chan ◽  
M. B. Tracy ◽  
Q. Y. Lee ◽  
M. Hinder ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Tiannv Shi ◽  
Yongmei Guan ◽  
Lihua Chen ◽  
Shiyu Huang ◽  
Weifeng Zhu ◽  
...  

Product quality control is a prerequisite for ensuring safety, effectiveness, and stability. However, because of the different strain species and fermentation processes, there was a significant difference in quality. As a result, they should be clearly distinguished in clinical use. Among them, the fermentation process is critical to achieving consistent product quality. This study aims to introduce near-infrared spectroscopy analysis technology into the production process of fermented Cordyceps powder, including strain culture, strain passage, strain fermentation, strain filtration, strain drying, strain pulverizing, and strain mixing. First, high performance liquid chromatography (HPLC) was used to measure the total nucleosides content in the production process of 30 batches of fermented Cordyceps powder, including uracil, uridine, adenine, guanosine, adenosine, and the process stability and interbatch consistency were analyzed with traditional Chinese medicine (TCM) fingerprinting, followed by the near-infrared spectroscopy (NIRS) combined with partial least squares regression (PLSR) to establish a quantitative analysis model of total nucleosides for online process monitoring of fermented Cordyceps powder preparation products. The model parameters indicate that the established model with good robustness and high measurement precision. It further clarifies that the model can be used for online process monitoring of fermented Cordyceps powder preparation products.


2021 ◽  
Vol 8 ◽  
Author(s):  
Leeann R. Pavlek ◽  
Clifford Mueller ◽  
Maria R. Jebbia ◽  
Matthew J. Kielt ◽  
Omid Fathi

With advances in neonatal care, survival of premature infants at the limits of viability has improved significantly. Despite these improvement in mortality, infants born at 22–24 weeks gestation are at a very high risk for short- and long-term morbidities associated with prematurity. Many of these diseases have been attributed to abnormalities of tissue oxygenation and perfusion. Near-infrared spectroscopy utilizes the unique absorption properties of oxyhemoglobin and deoxyhemoglobin to provide an assessment of regional tissue oxygen saturation, which can be used to calculate the fractional tissue oxygen extraction. This allows for a non-invasive way to monitor tissue oxygen consumption and enables targeted hemodynamic management. This mini-review provides a brief and complete overview of the background and physiology of near-infrared spectroscopy, practical use in extremely preterm infants, and potential applications in the neonatal intensive care unit. In this mini-review, we aim to summarize the three primary application sites for near-infrared spectroscopy, disease-specific indications, and available literature regarding use in extremely preterm infants.


Sign in / Sign up

Export Citation Format

Share Document