Theoretical analysis and experimental results on super-conducting magnetic energy storage (SMES) in dynamic simulation test of power system

Author(s):  
Hui Zhang ◽  
Yong Kang ◽  
Pengcheng Zhu ◽  
Xuejuan kong ◽  
Ping Liu ◽  
...  
Author(s):  
Ibrahim Olawale Muritala ◽  
M B Mu’azu ◽  
E A Adedokun

This paper presents a MATLAB simulator of a three area interconnected power system of Thermal-Gas-Hydro. Nonlinearities intrinsic in the interconnected power system of communication delay, Generation Rate Constraint and Generation Dead Band were measured. Bat Inspired Algorithm was exploited to select the favourable parameters of the Model Predictive Controller and the Super Conducting Magnetic Energy Storage. Model Predictive Controller was the subordinate controller employed to minimalize the Area Control Error, Super Conducting Magnetic Energy Storage was the energy buffer to balance the load demand and the power generated. Integral Time Absolute Error was the performance metrics employed to minimize the Area Control Error. Parametric dissimilarity was tested on the inter-connected power system to observe the efficacy of the controller. Step load perturbation of  was concurrently applied to the three-area inter-connected network,  was introduced to the thermal generating unit,  was introduced to the gas and hydro generating unit.  Value of the tie-line was introduced to examine its effect on the frequency deviation. The results performed better when compared with Model Predictive Controller joined with Super Conducting Magnetic Energy Storage against the Model Predictive Controller without Super Conducting Magnetic Energy Storage in relations to settling time, overshoot and undershoot.


2020 ◽  
pp. 0309524X2094952
Author(s):  
Zahid Afzal Thoker ◽  
Shameem Ahmad Lone

The random nature of wind power along with active and reactive load changes results in both frequency and voltage fluctuations in a wind–diesel power system. In order to improve the dynamic performance by regulating the frequency as well as voltage of the system, an adaptive sliding mode control strategy is proposed on superconducting magnetic energy storage unit interfaced with a wind–diesel power system. Sliding mode control strategy developed with the superconducting magnetic energy storage unit achieves fast and effective exchange of real and reactive power via firing angle control of the converter. With the help of suitable switching surface design and use of adaptive control law, chattering elimination and controller robustness is achieved. This work is carried out in MATLAB/Simulink, and simulation results presented shows a positive impact of proposed scheme.


1983 ◽  
Vol 19 (3) ◽  
pp. 350-353 ◽  
Author(s):  
T. Shintomi ◽  
M. Masuda ◽  
T. Ishikawa ◽  
S. Akita ◽  
T. Tanaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document