super conducting
Recently Published Documents


TOTAL DOCUMENTS

195
(FIVE YEARS 20)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 25 (11) ◽  
pp. 6001-6021
Author(s):  
Tommaso Pivetta ◽  
Carla Braitenberg ◽  
Franci Gabrovšek ◽  
Gerald Gabriel ◽  
Bruno Meurers

Abstract. Monitoring the water movements in karstic areas is a fundamental but challenging task due to the complexity of the drainage system and the difficulty in deploying a network of observations. Gravimetry offers a valid complement to classical hydrologic measurements in order to characterize such systems in which the recharge process causes temporarily accumulation of large water volumes in the voids of the epi-phreatic system. We show an innovative integration of gravimetric and hydrologic observations that constrains a hydrodynamic model of the Škocjan cave system (Slovenia). We demonstrate how the inclusion of gravity observations improves water mass budget estimates for the Škocjan area based on hydrological observations only. Finally, the detectability of water storage variations in other karstic contexts is discussed with respect to the noise performances of spring and super-conducting gravimeters.


2021 ◽  
Vol 11 (14) ◽  
pp. 6495
Author(s):  
Michele Opromolla ◽  
Vittoria Petrillo

In this paper, we show that an electron beam produced by a super-conducting linac, driven in a sequence of two undulator modules of different periods, can generate two-color Terahertz radiation with wavelengths ranging from 100 μm to 2 μm. The generated pulses are synchronized, both MW-class, and highly coherent. Their specific properties and generation will be discussed in detail. Besides the single-spike pulse structure, usually observed in oscillators, we show that both the THz pump and probe can be modulated in a coherent comb of pulses, enabling periodic excitation and stroboscopic measurements.


2021 ◽  
Vol 7 (7) ◽  
pp. 93
Author(s):  
Samia Benmansour ◽  
Carlos J. Gómez-García

Here, we review the different series of (super)conducting and magnetic radical salts prepared with organic donors of the tetrathiafulvalene (TTF) family and oxalato-based metal complexes (ox = oxalate = C2O42−). Although most of these radical salts have been prepared with the donor bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF = ET), we also include all the salts prepared with other TTF-type donors such as tetrathiafulvalene (TTF), tetramethyl-tetrathiafulvalene (TM-TTF), bis(ethylenediseleno)tetrathiafulvalene (BEST), bis(ethylenedithio)tetraselenafulvalene (BETS) and 4,5bis((2S)-2-hydroxypropylthio)-4’,5’-(ethylenedithio)tetrathiafulvalene (DMPET). Most of the oxalate-based complexes are monomers of the type [MIII(C2O4)3]3−, [Ge(C2O4)3]2− or [Cu(C2O4)2]2−, but we also include the reported salts with [Fe2(C2O4)5]4− dimers, [MII(H2O)2[MIII(C2O4)3]2]4− trimers and homo- or heterometallic extended 2D layers such as [MIIMIII(C2O4)3]− and [MII2(C2O4)3]2−. We will present the different structural families and their magnetic properties (such as diamagnetism, paramagnetism, antiferromagnetism, ferromagnetism and even long-range magnetic ordering) that coexist with interesting electrical properties (such as semiconductivity, metallic conductivity and even superconductivity). We will focus on the electrical and magnetic properties of the so-called Day series formulated as β”-(BEDT-TTF)4[A+MIII(C2O4)3]·G, which represents the largest family of paramagnetic metals and superconductors reported to date, with more than fifty reported examples.


2021 ◽  
Vol 11 (13) ◽  
pp. 5892
Author(s):  
Michele Opromolla ◽  
Alberto Bacci ◽  
Marcello Rossetti Conti ◽  
Andrea Renato Rossi ◽  
Giorgio Rossi ◽  
...  

Fine time-resolved analysis of matter—that is, spectroscopy and photon scattering—in the linear response regime requires fs-scale pulsed, high repetition rate, fully coherent X-ray sources. A seeded Free-Electron Laser, driven by a linac based on Super Conducting cavities, generating 108–1010 coherent photons at 2–5 keV with 0.2–1 MHz of repetition rate, can address this need. The scheme proposed is a Free-Electron Laser Oscillator at 3 keV, working with a cavity based on X-ray mirrors. The whole chain of the X-ray generation is here described by means of start-to-end simulations.


2021 ◽  
Author(s):  
Tommaso Pivetta ◽  
Carla Braitenberg ◽  
Franci Gabrovšek ◽  
Gerald Gabriel ◽  
Bruno Meurers

Abstract. Monitoring the water movements in karstic areas is a fundamental but challenging task due to the complexity of the drainage system and the difficulty in deploying a network of observations. Gravimetry offers a valid complement to classical hydrologic measurements in order to characterize such systems in which the recharge process causes temporarily accumulation of large water volumes in the voids of the epi-phreatic system. We show an innovative integration of gravimetric and hydrologic observations that constrains a hydrodynamic model of the Škocjan cave system (Slovenia). We demonstrate how the inclusion of gravity observations improves water mass budget estimates for the Škocjan area based on hydrological observations only. Finally, the detectability of water storage variations in other karstic contexts is discussed with respect to the noise performances of spring and super-conducting gravimeters.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Masahiro Ibe ◽  
Shin Kobayashi ◽  
Yuhei Nakayama ◽  
Satoshi Shirai

Abstract Recently, the chiral superconductivity of the cosmic string in the axion model has gathered attention. The superconductive nature can alter the standard understanding of the cosmology of the axion model. For example, a string loop with a sizable super-conducting current can become a stable configuration, which is called a Vorton. The superconductive nature can also affect the cosmological evolution of the string network. In this paper, we study the stability of the superconducting current in the string. We find the superconductivity is indeed stable for a straight string or infinitely small string core size, even if the carrier particles are unstable in the vacuum. However we also find that the carrier particle decays in a curved string in typical axion models, if the carrier particles are unstable in the vacuum. Accordingly, the lifetime of the Vorton is not far from that of the carrier particle in the vacuum.


Author(s):  
N. Manikanda Prabu ◽  
S. Nallusamy ◽  
G. Sureshkannan

Removal of heat generation is an important characteristic needs to be considered in electromechanical and electronic devices which improve the stability and feasibility of system. Despite numerous cooling methods, heat pipes are recent updating in research line. Heat pipes are one of the super conducting medium of heat energy and it is being used as an equipment to absorb more heat through phase change process of cooling medium circulated in it. It ensures the direct enhancement in heat transfer capacity and characteristics. Nowadays, improvement of the thermal performance in heat pipes getting up with various technologies, especially combination of heat pipe and Nano fluids. It has been experimentally practiced and various results are observed by previous researches that wick structure also a part of reason in improvement. The aim of this research work is to analyze the influence of wick material to improve heat transfer characteristics in heat pipes. In addition, combination of nano coated wick material with heat pipes is comparatively analyzed. From the final observed results it was found that, the best combination of wick material is supporting the better cooling requirements in electronic devices.


2020 ◽  
Vol 37 (4) ◽  
pp. 048501
Author(s):  
Ying Yang ◽  
Ze-Hua Tian ◽  
Ji-Liang Jing

Sign in / Sign up

Export Citation Format

Share Document