Software poly-models of solar photovoltaic plants for different types of system studies

Author(s):  
V. V. Pavlovskyi ◽  
L. N Lukianenko ◽  
A. M. Zakharov
Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1463
Author(s):  
Kwami Senam A. Sedzro ◽  
Kelsey Horowitz ◽  
Akshay K. Jain ◽  
Fei Ding ◽  
Bryan Palmintier ◽  
...  

With the increasing share of distributed energy resources on the electric grid, utility companies are facing significant decisions about infrastructure upgrades. An alternative to extensive and capital-intensive upgrades is to offer non-firm interconnection opportunities to distributed generators, via a coordinated operation of utility scale resources. This paper introduces a novel flexible interconnection option based on the last-in, first-out principles of access aimed at minimizing the unnecessary non-firm generation energy curtailment by balancing access rights and contribution to thermal overloads. Although we focus on solar photovoltaic (PV) plants in this work, the introduced flexible interconnection option applies to any distributed generation technology. The curtailment risk of individual non-firm PV units is evaluated across a range of PV penetration levels in a yearlong quasi-static time-series simulation on a real-world feeder. The results show the importance of the size of the curtailment zone in the curtailment risk distribution among flexible generation units as well as that of the “access right” defined by the order in which PV units connect to the grid. Case study results reveal that, with a proper selection of curtailment radius, utilities can reduce the total curtailment of flexible PV resources by up to more than 45%. Findings show that non-firm PV generators can effectively avoid all thermal limit-related upgrade costs.


2021 ◽  
Vol 11 (14) ◽  
pp. 6524
Author(s):  
Andrés Pérez-González ◽  
Álvaro Jaramillo-Duque ◽  
Juan Bernardo Cano-Quintero

Nowadays, the world is in a transition towards renewable energy solar being one of the most promising sources used today. However, Solar Photovoltaic (PV) systems present great challenges for their proper performance such as dirt and environmental conditions that may reduce the output energy of the PV plants. For this reason, inspection and periodic maintenance are essential to extend useful life. The use of unmanned aerial vehicles (UAV) for inspection and maintenance of PV plants favor a timely diagnosis. UAV path planning algorithm over a PV facility is required to better perform this task. Therefore, it is necessary to explore how to extract the boundary of PV facilities with some techniques. This research work focuses on an automatic boundary extraction method of PV plants from imagery using a deep neural network model with a U-net structure. The results obtained were evaluated by comparing them with other reported works. Additionally, to achieve the boundary extraction processes, the standard metrics Intersection over Union (IoU) and the Dice Coefficient (DC) were considered to make a better conclusion among all methods. The experimental results evaluated on the Amir dataset show that the proposed approach can significantly improve the boundary and segmentation performance in the test stage up to 90.42% and 91.42% as calculated by IoU and DC metrics, respectively. Furthermore, the training period was faster. Consequently, it is envisaged that the proposed U-Net model will be an advantage in remote sensing image segmentation.


2021 ◽  
Vol 7 ◽  
pp. 4882-4894
Author(s):  
Soumya Basu ◽  
Takaya Ogawa ◽  
Hideyuki Okumura ◽  
Keiichi N. Ishihara

2018 ◽  
Vol 52 (1) ◽  
pp. 85-90 ◽  
Author(s):  
D. S. Strebkov ◽  
A. Kh. Shogenov

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1921 ◽  
Author(s):  
B. Kavya Santhoshi ◽  
K. Mohana Sundaram ◽  
Sanjeevikumar Padmanaban ◽  
Jens Bo Holm-Nielsen ◽  
Prabhakaran K. K.

Solar Photovoltaic (PV) systems have been in use predominantly since the last decade. Inverter fed PV grid topologies are being used prominently to meet power requirements and to insert renewable forms of energy into power grids. At present, coping with growing electricity demands is a major challenge. This paper presents a detailed review of topological advancements in PV-Grid Tied Inverters along with the advantages, disadvantages and main features of each. The different types of inverters used in the literature in this context are presented. Reactive power is one of the ancillary services provided by PV. It is recommended that reactive power from the inverter to grid be injected for reactive power compensation in localized networks. This practice is being implemented in many countries, and researchers have been trying to find an optimal way of injecting reactive power into grids considering grid codes and requirements. Keeping in mind the importance of grid codes and standards, a review of grid integration, the popular configurations available in literature, Synchronization methods and standards is presented, citing the key features of each kind. For successful integration with a grid, coordination between the support devices used for reactive power compensation and their optimal reactive power capacity is important for stability in grid power. Hence, the most important and recommended intelligent algorithms for the optimization and proper coordination are peer reviewed and presented. Thus, an overview of Solar PV energy-fed inverters connected to the grid is presented in this paper, which can serve as a guide for researchers and policymakers.


2019 ◽  
Vol 13 (9) ◽  
pp. 43
Author(s):  
A. M. Soliman ◽  
Mohamed A. Sharaf Eldean ◽  
Imed Miraouia

Solar-Wind systems are growing as a vital option to power different types of membrane desalination processes. It is becoming very important to use renewable power sources because of zero emissions to the environment. In this work, solar photovoltaic (PV) system is used to power on the reverse osmosis (RO) desalination process. Meanwhile, Vertical Wind Turbine (VWT) system has been used as a recovery system during sun absence periods. Moreover, the possibilities to operate a hybrid system of PV-VWT combined with RO system has also investigated. The system is designed to desalinate a low rate of fresh water at a scale capacity of 0.1-1m3/day. The system is contained as a mobile unit which can be used to serve rural areas during safari and tourism travels in deserts with some features such as, compactness, stability, and ease of maintenance. The unit product cost (UPC, $/m3) is found in the range of 1.51$/m3.


2021 ◽  
pp. 0958305X2110571
Author(s):  
J. Charles Rajesh Kumar ◽  
MA Majid

The 18,000 square kilometers of water reservoirs in India can generate 280 GW of solar power through floating solar photovoltaic plants. The cumulative installed capacity of FSPV is 0.0027 GW, and the country plans to add 10 GW of FSPV to the 227 GW renewable energy target of 2022. The FSPV addition is small related to the entire market for solar energy, but each contribution is appreciated in the renewable energy market. FSPV could be a viable alternative for speeding up solar power deployment in the country and meeting its NDC targets. So far, the country has achieved the world's lowest investment cost for a floating solar installation. Despite the lower costs, generalizations are still premature because FSPV is still in its initial stages of market entry. Continuous innovation and timely adoption of innovative ideas and technology will support India in meeting its solar energy goals and progressing toward a more sustainable future. Governments must establish clear and enforceable policies to assist developers in reducing risks and increasing investor confidence in the sector. Economic and financial feasibility are examined, and various difficulties in technology, design, finances, environment, maintenance, and occupational health that impact the FSPV deployment are discussed. Based on the research, effective and comprehensive FSPV policy suggestions are included to support establishing an appropriate market, fostering competition and innovation, and attracting large-scale investment. This paper aims to stimulate interest among various policy developers, energy suppliers, industrial designers, ergonomists, project developers, manufacturers, health and safety professionals, executing agencies, training entities, and investment institutions of the FSPV plant to implement effective governance planning and help them to participate in their ways to assure sustainable growth.


Sign in / Sign up

Export Citation Format

Share Document