Assessment of Electrocoagulation Control System Strategy in Textile Wastewater Treatment Plant

Author(s):  
Bobby Efendy ◽  
Estiyanti Ekawati ◽  
Nazuwatussya'diyah ◽  
Eko Mursito Budi
2020 ◽  
Vol 245 ◽  
pp. 118929 ◽  
Author(s):  
Pranav H. Nakhate ◽  
Keyur K. Moradiya ◽  
Hrushikesh G. Patil ◽  
Kumudini V. Marathe ◽  
Ganapati D. Yadav

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Katarzyna Paździor ◽  
Lucyna Bilińska

AbstractThe relationship between a quality of activated sludge microbiota and wastewater treatment plant (WWTP) operational stability has been defined in the past few decades. However, this dependence is not so clear in the case of industrial wastewater treatment. In this article, a very specific example of industrial textile wastewater treatment plant (ITWTP) is analyzed. Textile effluents are well known as highly contaminated wastewater containing many biodegradable compounds. Microscopic analysis included flocs morphology examination, attempts to evaluate the Sludge Biotic Index (SBI), and identification of dominant filamentous microorganisms. Routine operational control of ITWTP covered pH, temperature, redox potential, dissolved oxygen and COD measurements. The average ecosystem existing in the described ITWTP differed significantly compared to municipal WWTPs. The flocs were smaller and irregular. Filamentous bacteria did not cause foaming although filaments index reached 4. Nostocoida limicola I dominated with significant amounts of type 0041 and type 021N. The evaluation of SBI was impossible as the most of protozoan was in the form of cysts. The overall microbiota diversity correlated with COD removal in activated sludge unit of ITWTP.


1999 ◽  
Vol 40 (4-5) ◽  
pp. 99-105 ◽  
Author(s):  
A. Lopez ◽  
G. Ricco ◽  
R. Ciannarella ◽  
A. Rozzi ◽  
A. C. Di Pinto ◽  
...  

Among the activities appointed by the EC research-project “Integrated water recycling and emission abatement in the textile industry” (Contract: ENV4-CT95-0064), the effectiveness of ozone for improving the biotreatability of recalcitrant effluents as well as for removing from them toxic and/or inhibitory pollutants has been evaluated at lab-scale. Real membrane concentrates (pH=7.9; TOC=190 ppm; CDO=595 ppm; BOD5=0 ppm; Conductivity=5,000 μS/cm; Microtox-EC20=34%) produced at Bulgarograsso (Italy) Wastewater Treatment Plant by nanofiltering biologically treated secondary textile effluents, have been treated with ozonated air (O3conc.=12 ppm) over 120 min. The results have indicated that during ozonation, BOD5 increases from 0 to 75 ppm, whereas COD and TOC both decrease by about 50% and 30 % respectively. As for potentially toxic and/or inhibitory pollutants such as dyes, nonionic surfactants and halogenated organics, all measured as sum parameters, removals higher than 90% were achieved as confirmed by the complete disappearance of acute toxicity in the treated streams. The only ozonation byproducts searched for and found were aldehydes whose total amount continuously increased in the first hour from 1.2 up to 11.8 ppm. Among them, formaldehyde, acetaldehyde, glyoxal, propionaldehyde, and butyraldehyde were identified by HPLC.


1998 ◽  
Vol 37 (12) ◽  
pp. 141-148 ◽  
Author(s):  
B. K. Lee ◽  
S. W. Sung ◽  
H. D. Chun ◽  
J. K. Koo

The objective of this study is to develop an automatic control system for dissolved oxygen (DO) and pH of the activated sludge process in a coke wastewater treatment plant. A discrete type autotuned proportional-integral (PI) controller using an auto-regressive exogenous (ARX) model as a process model was developed to maintain the DO concentration in aerators by controlling the speed of surface aerators. Also a nonlinear pH controller using the titration curve was used to control the pH of influent wastewater. This control system was tested in a pilot scale plant. During this pilot plant experiment, there was small deviation of pH and the electric power consumption of surface aerators was reduced up to 70% with respect to the full operation when the DO set point was 2 mg/l. For real plant operation with this system, the discrete PI controller showed good tracking for set point change. The electricity saving was more than 40% of the electricity consumption when considering surface aerators. As a result of maintaining the DO constantly at the set point by the automatic control system, the fluctuation of effluent quality was decreased and overall improvement of the effluent water quality was achieved.


Sign in / Sign up

Export Citation Format

Share Document