coke wastewater
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 11)

H-INDEX

17
(FIVE YEARS 3)

Author(s):  
Jesús Rodríguez-Iglesias ◽  
Lara Alcalá ◽  
Laura Megido ◽  
Leonor Castrillón

AbstractCoke wastewater is one of the most problematic industrial wastewaters, due to its large volume and complex pollutant load. In this study, ion exchange technology was investigated with the objective of reducing the fluoride content of the effluent from a coke wastewater treatment plant (26.7 mg F-/L). Two Al-doped exchange resins with chelating aminomethyl-phosphonic acid and iminodiacetic groups were assessed: Al-doped TP260 and TP207 resins, respectively. The effect of resin dosage, varying from 5 to 25 g/L, was evaluated. F- removal was within the range 57.8–89.3% and 72.0–92.1% for Al-doped TP260 and TP207, respectively. A kinetic study based on a generalized integrated Langmuir kinetic equation fitted the experimental data (R2 > 0.98). The parameters of the said kinetics met the optimal conditions for the ion exchange process, which seemed to be more favorable with Al-doped TP260 resin than with Al-doped TP207 resin, using the same resin dosage. Furthermore, the experimental data were well described (R2 > 0.98) by Langmuir and Freundlich isotherm models, in agreement with the findings of the kinetic study: the maximum sorption capacity was obtained for the Al-doped TP260 resin.


Author(s):  
Lipsa Mishra ◽  
Kakoli Karar Paul ◽  
Somesh Jena

2021 ◽  
Vol 191 ◽  
pp. 116863
Author(s):  
Zhen Li ◽  
Xinru Zhang ◽  
Nien-Chu Lai ◽  
Zeyi Jiang ◽  
Jingzhai Li

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 963
Author(s):  
Anna Kwarciak-Kozłowska ◽  
Małgorzata Worwąg

The growing production of coke and, consequently, coke wastewater is a significant problem for the environment. Coke wastewater, because it contains high amounts of toxic substances, is classified as an extremely hazardous industrial wastewater. The treatment of such wastewater requires a combination of advanced physicochemical and biological methods. The aim of the research was to investigate the effectiveness of the application of the ultrasonic disintegration of coke wastewater in a sequencing batch reactor (SBR). The tests were conducted in two stages, wherein the first stage involved determining the most favorable sonication conditions, that is, time and amplitude. The authors used the following amplitudes: 31 µm; 61.5 µm; 92 µm; 123 µm and times: 120 s; 240 s; 480 s; 960 s. The second stage focused on treating coke wastewater in SBRs (Reactor A—a proportion of coke wastewater in the mixture: 5%, 10%, and 20%; reactor B—sonicated coke wastewater, proportion in mixture: 5%, 10%, 20%). The efficiency of the treatment process was determined based on the rate of removal of selected parameters: chemical oxygen demand (COD), total organic carbon (TOC), inorganic carbon (IC), ammoniacal nitrogen (N-NH4), total nitrogen (TN), the course of pH changes. The study revealed that sonication of coke wastewater increased biodegradability and reduced its toxicity. The use of the preliminary sonication of coke wastewater before biological treatment improved the degree of removal of the tested parameters by approximately 10%. The volumetric ratio of coke wastewater in the mixture had the greatest impact on the obtained results. The use of an ultrasound field allows the treatment process to be executed with a coke wastewater addition exceeding 10%. In addition, it was found that in order to increase the coke wastewater treatment efficiency, one should optimize individual phases in the SBR and the pollution load.


2019 ◽  
Vol 133 ◽  
pp. 85-91 ◽  
Author(s):  
Xindong Qin ◽  
Zhengkun Li ◽  
Zhengwang Zhu ◽  
Dawei Fang ◽  
Haifeng Zhang

2019 ◽  
Vol 288 ◽  
pp. 121524 ◽  
Author(s):  
Eleanor Raper ◽  
Tom Stephenson ◽  
Raymond Fisher ◽  
David R. Anderson ◽  
Ana Soares

Proceedings ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 44
Author(s):  
Kozak ◽  
Włodarczyk-Makuła

The aim of the research was to determine the effectiveness of removing micro-organic pollutants, including PAHs, using the modified Fenton method. The tested material was pretreated coke wastewater, in which the initial chemical oxygen demand (COD) value and initial polycyclic aromatic hydrocarbons (PAHs) concentration were determined. The samples were then subjected to an oxidation procedure. Before the process, the pH was adjusted to 3.5–3.8. Next, the following doses of sodium carbonate—hydrogen peroxide (2/3): 1.2 g/L, 1.5 g/L and 2 g/L, and a constant dose of iron sulphate were added. The next step was exposing the samples to UV light for 6 min and separating the organic matrix from the samples of wastewater. After the tests, the final value of the COD and the final PAHs concentration were determined. The average content of organic pollutants in pretreated coke wastewater determined by the COD index was 538 mg/L, and after the oxidation process, the COD index decreased in the range from 9 to 29%. The efficiency of the degradation of the sum of 16 PAHs was varied and was in the range of 94–97.6%. The research results show that sodium carbonate—hydrogen peroxide (2/3) can be used for the degradation of organic pollutants, such as PAHs, in the modified Fenton process.


Sign in / Sign up

Export Citation Format

Share Document