Real-time whole body imitation by humanoic robot based on particle filter and dimension reduction by autoencoder

Author(s):  
Yo Kondo ◽  
Yasutake Takahashi
2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Badr Khbouz ◽  
François Lallemand ◽  
Pascal Rowart ◽  
Laurence Poma ◽  
Agnès Noel ◽  
...  

Abstract Background and Aims Whole-body irradiation has been suggested to induce renal ischemic preconditioning (RIP) in rodent models, possibly via neo-angiogenesis. First, we comprehensively investigate the pathways involved in kidney-centered irradiation. Next, we assess the functional and structural impact of kidney-centered irradiation applied before ischemia/reperfusion (I/R) injury. Finally, we test whether Sunitinib-mediated inhibition of the neo-angiogenesis prevents irradiation-associated RIP. Method Experiment 1: Unilateral irradiation of the left kidney (8.56 Gy) was performed in male 10-week-old wild-type C57bl/6 mice (n=10). One month later, total kidney RNA was extracted from irradiated and control (n=5) mice for comparative high-throughput RNA-Seq (using BaseSpace Sequence Hub Illumina). Functional enrichment analysis was performed using Database for Annotation, Visualization and Integrated Discovery (DAVID). Experiment 2: Two x-ray beams (225Kv, 13mA) specifically targeted both kidneys for a total dose of 8.56Gy. The right kidneys were removed and harvested, and the left kidneys undergo 30-minute ischemia followed by 48-hour reperfusion (n=8) at Days 7-14-21-28 post irradiation. Experiment 3: Following the same protocol of renal I/R at Day14, 3 groups of male 10-week-old wild-type C57bl/6 mice were compared (n=8 per group): 1/ bilateral pre-irradiation; 2/ bilateral pre-irradiation and gavage with Sunitinib from Day2 to Day13; 3/ control group without irradiation or gavage. Results Experiment 1: Comparative transcriptomics showed a significant up-regulation of various signaling pathways, including angiogenesis (HMOX1) and stress response (HSPA1A, HSPA1B). Expressions of angiogenesis markers (CD31, TGFb1, HMOX1) showed an increase at both mRNA (real-time qPCR) and protein (immuno-staining) levels in irradiated kidneys compared to controls (p<0.01). Experiment 2: Following I/R, the blood urea nitrogen (BUN) and serum creatinine (SCr) levels were significantly lower in the irradiated animals compared to controls: (BUN: 86.2±6.8 vs. 454.5±27.2mg/dl; SCr: 0.1±0.01 vs. 1.7±0.2mg/dl, p<0.01). The renal infiltration by CD11b-positive cells (187±32 vs. 477±20/mm²) and F4-80 macrophages (110±22 vs. 212±25/mm²) was significantly reduced in the irradiated group. The real-time qPCR mRNA levels of the angiogenic markers, TGFb1 and CD31, were significantly increased in the irradiated group compared to controls (p<0,01). The CD31-immunostating (quantified by FiJi) was increased in irradiated mice compared to controls (p<0.01). Experiment 3: One-way analysis of variance followed by Tukey’s test showed that, following I/R, the serum levels of BUN and SCr were lower in irradiated group compared to controls (BUN: 106.1±33.6 vs. 352.2±54.3mg/dl; SCr: 0.3±0.13 vs. 1±0.2mg/dl), and in irradiated group compared to the irradiated-exposed group to Sunitinib (BUN: 106.1±33.6 vs. 408.4±54.9mg/dl; SCr: 0.3±0.12 vs. 1.5±0.3mg/dl; p<0.01). No difference was observed between the irradiated-exposed mice to Sunitinib and the controls. Conclusion Renal irradiation induces the activation of signaling pathways involved in angiogenesis in mice. Renal pre-irradiation leads to RIP, with preserved renal function and attenuated inflammation post I/R. Exposure to the anti-angiogenic drug Sunitinib post-irradiation prevents the irradiation-induced RIP.


2009 ◽  
Vol 14 (6) ◽  
pp. 060504 ◽  
Author(s):  
Andrzej May ◽  
Srabani Bhaumik ◽  
Sanjiv S. Gambhir ◽  
Chun Zhan ◽  
Siavash Yazdanfar

Author(s):  
Norikazu Ikoma ◽  
◽  
Akihiro Asahara ◽  

Real time visual tracking by particle filter has been implemented on Cell Broadband Engine in parallel. Major problem for the implementation is small size of Local Store (LS) in SPEs (Synergistic PEs), which are computational cores, to deal with image of large size. As a first step for the implementation, we focus on color single object tracking, which is one of the most simple case of visual tracking. By elaborating to compress the color extracted image into bit-wise representation of binary image, all information of the color extracted image can be stored in LS for 640×480 size of original image. By applying our previous implementation of general particle filter algorithm on Cell/B.E. to this specific case, we have achieved real time performance of visual tracking on PlayStation®3 about 7 fps with a camera of maximum 15 fps.


2014 ◽  
Vol 95 (7) ◽  
pp. 31-37 ◽  
Author(s):  
Jharna Majumdar ◽  
Parashar Dhakal ◽  
Nabin Sharma Rijal ◽  
Amar Mani Aryal ◽  
Nilesh Kumar Mishra

2012 ◽  
Vol 11 (1) ◽  
pp. 179-191 ◽  
Author(s):  
Marcos Nieto ◽  
Andoni Cortés ◽  
Oihana Otaegui ◽  
Jon Arróspide ◽  
Luis Salgado

Sign in / Sign up

Export Citation Format

Share Document