camera tracking
Recently Published Documents


TOTAL DOCUMENTS

315
(FIVE YEARS 70)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Vol 22 (1) ◽  
pp. 1-20
Author(s):  
Di Zhang ◽  
Feng Xu ◽  
Chi-Man Pun ◽  
Yang Yang ◽  
Rushi Lan ◽  
...  

Artificial intelligence including deep learning and 3D reconstruction methods is changing the daily life of people. Now, an unmanned aerial vehicle that can move freely in the air and avoid harsh ground conditions has been commonly adopted as a suitable tool for 3D reconstruction. The traditional 3D reconstruction mission based on drones usually consists of two steps: image collection and offline post-processing. But there are two problems: one is the uncertainty of whether all parts of the target object are covered, and another is the tedious post-processing time. Inspired by modern deep learning methods, we build a telexistence drone system with an onboard deep learning computation module and a wireless data transmission module that perform incremental real-time dense reconstruction of urban cities by itself. Two technical contributions are proposed to solve the preceding issues. First, based on the popular depth fusion surface reconstruction framework, we combine it with a visual-inertial odometry estimator that integrates the inertial measurement unit and allows for robust camera tracking as well as high-accuracy online 3D scan. Second, the capability of real-time 3D reconstruction enables a new rendering technique that can visualize the reconstructed geometry of the target as navigation guidance in the HMD. Therefore, it turns the traditional path-planning-based modeling process into an interactive one, leading to a higher level of scan completeness. The experiments in the simulation system and our real prototype demonstrate an improved quality of the 3D model using our artificial intelligence leveraged drone system.


2021 ◽  
Vol 33 (6) ◽  
pp. 1385-1397
Author(s):  
Leyuan Sun ◽  
Rohan P. Singh ◽  
Fumio Kanehiro ◽  
◽  
◽  
...  

Most simultaneous localization and mapping (SLAM) systems assume that SLAM is conducted in a static environment. When SLAM is used in dynamic environments, the accuracy of each part of the SLAM system is adversely affected. We term this problem as dynamic SLAM. In this study, we propose solutions for three main problems in dynamic SLAM: camera tracking, three-dimensional map reconstruction, and loop closure detection. We propose to employ geometry-based method, deep learning-based method, and the combination of them for object segmentation. Using the information from segmentation to generate the mask, we filter the keypoints that lead to errors in visual odometry and features extracted by the CNN from dynamic areas to improve the performance of loop closure detection. Then, we validate our proposed loop closure detection method using the precision-recall curve and also confirm the framework’s performance using multiple datasets. The absolute trajectory error and relative pose error are used as metrics to evaluate the accuracy of the proposed SLAM framework in comparison with state-of-the-art methods. The findings of this study can potentially improve the robustness of SLAM technology in situations where mobile robots work together with humans, while the object-based point cloud byproduct has potential for other robotics tasks.


2021 ◽  
Author(s):  
Yundong Guo ◽  
Zhenyu Liu ◽  
Hao Luo ◽  
Huijie Pu ◽  
Jianrong Tan
Keyword(s):  

Author(s):  
Taemin Lee ◽  
Changhun Jung ◽  
Kyungtaek Lee ◽  
Sanghyun Seo

AbstractAs augmented reality technologies develop, real-time interactions between objects present in the real world and virtual space are required. Generally, recognition and location estimation in augmented reality are carried out using tracking techniques, typically markers. However, using markers creates spatial constraints in simultaneous tracking of space and objects. Therefore, we propose a system that enables camera tracking in the real world and visualizes virtual visual information through the recognition and positioning of objects. We scanned the space using an RGB-D camera. A three-dimensional (3D) dense point cloud map is created using point clouds generated through video images. Among the generated point cloud information, objects are detected and retrieved based on the pre-learned data. Finally, using the predicted pose of the detected objects, other information may be augmented. Our system estimates object recognition and 3D pose based on simple camera information, enabling the viewing of virtual visual information based on object location.


Author(s):  
A.V. Bobkov ◽  
G.V. Tedeev

The article proposes a multi-camera tracking system for an object, implemented using computer vision technologies and allowing the video surveillance operator in real time to select an object that will be monitored by the system in future. It will be ready to give out the location of the object at any time. The solution to this problem is divided into three main stages: the detection stage, the tracking stage and the stage of interaction of several cameras. Methods of detection, tracking of objects and the interaction of several cameras have been investigated. To solve the problem of detection, the method of optical flow and the method of removing the background were investigated, to solve the problem of tracking — the method of matching key points and the correlation method, to solve the problem of interaction between several surveillance cameras — the method of the topological graph of a network of cameras. An approach is proposed for constructing a system that uses a combination of the background removal method, the correlation method and the method of the topological graph of a network of cameras. The stages of detection and tracking have been experimentally implemented, that is, the task of tracking an object within the coverage area of one video camera has been solved. The implemented system showed good results: a sufficiently high speed and accuracy with rare losses of the tracked object and with a slight decrease in the frame rate.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5839
Author(s):  
Denghua Fan ◽  
Liejun Wang ◽  
Shuli Cheng ◽  
Yongming Li

As a sub-direction of image retrieval, person re-identification (Re-ID) is usually used to solve the security problem of cross camera tracking and monitoring. A growing number of shopping centers have recently attempted to apply Re-ID technology. One of the development trends of related algorithms is using an attention mechanism to capture global and local features. We notice that these algorithms have apparent limitations. They only focus on the most salient features without considering certain detailed features. People’s clothes, bags and even shoes are of great help to distinguish pedestrians. We notice that global features usually cover these important local features. Therefore, we propose a dual branch network based on a multi-scale attention mechanism. This network can capture apparent global features and inconspicuous local features of pedestrian images. Specifically, we design a dual branch attention network (DBA-Net) for better performance. These two branches can optimize the extracted features of different depths at the same time. We also design an effective block (called channel, position and spatial-wise attention (CPSA)), which can capture key fine-grained information, such as bags and shoes. Furthermore, based on ID loss, we use complementary triplet loss and adaptive weighted rank list loss (WRLL) on each branch during the training process. DBA-Net can not only learn semantic context information of the channel, position, and spatial dimensions but can integrate detailed semantic information by learning the dependency relationships between features. Extensive experiments on three widely used open-source datasets proved that DBA-Net clearly yielded overall state-of-the-art performance. Particularly on the CUHK03 dataset, the mean average precision (mAP) of DBA-Net achieved 83.2%.


2021 ◽  
Vol 6 (3) ◽  
pp. 6084-6091
Author(s):  
Michael Krawez ◽  
Tim Caselitz ◽  
Jugesh Sundram ◽  
Mark Van Loock ◽  
Wolfram Burgard

2021 ◽  
Author(s):  
Yun-Lun Li ◽  
Zhi-Yi Chin ◽  
Ming-Ching Chang ◽  
Chen-Kuo Chiang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document