scholarly journals Real-time camera tracking using a particle filter combined with unscented Kalman filters

2014 ◽  
Vol 23 (01) ◽  
pp. 1 ◽  
Author(s):  
Seok-Han Lee
2021 ◽  
Vol 11 (15) ◽  
pp. 6701
Author(s):  
Yuta Sueki ◽  
Yoshiyuki Noda

This paper discusses a real-time flow-rate estimation method for a tilting-ladle-type automatic pouring machine used in the casting industry. In most pouring machines, molten metal is poured into a mold by tilting the ladle. Precise pouring is required to improve productivity and ensure a safe pouring process. To achieve precise pouring, it is important to control the flow rate of the liquid outflow from the ladle. However, due to the high temperature of molten metal, directly measuring the flow rate to devise flow-rate feedback control is difficult. To solve this problem, specific flow-rate estimation methods have been developed. In the previous study by present authors, a simplified flow-rate estimation method was proposed, in which Kalman filters were decentralized to motor systems and the pouring process for implementing into the industrial controller of an automatic pouring machine used a complicatedly shaped ladle. The effectiveness of this flow rate estimation was verified in the experiment with the ideal condition. In the present study, the appropriateness of the real-time flow-rate estimation by decentralization of Kalman filters is verified by comparing it with two other types of existing real-time flow-rate estimations, i.e., time derivatives of the weight of the outflow liquid measured by the load cell and the liquid volume in the ladle measured by a visible camera. We especially confirmed the estimation errors of the candidate real-time flow-rate estimations in the experiments with the uncertainty of the model parameters. These flow-rate estimation methods were applied to a laboratory-type automatic pouring machine to verify their performance.


2017 ◽  
Vol 56 (3) ◽  
pp. 033104 ◽  
Author(s):  
Xingyin Fu ◽  
Feng Zhu ◽  
Feng Qi ◽  
Mingming Wang

Author(s):  
Norikazu Ikoma ◽  
◽  
Akihiro Asahara ◽  

Real time visual tracking by particle filter has been implemented on Cell Broadband Engine in parallel. Major problem for the implementation is small size of Local Store (LS) in SPEs (Synergistic PEs), which are computational cores, to deal with image of large size. As a first step for the implementation, we focus on color single object tracking, which is one of the most simple case of visual tracking. By elaborating to compress the color extracted image into bit-wise representation of binary image, all information of the color extracted image can be stored in LS for 640×480 size of original image. By applying our previous implementation of general particle filter algorithm on Cell/B.E. to this specific case, we have achieved real time performance of visual tracking on PlayStation®3 about 7 fps with a camera of maximum 15 fps.


Sign in / Sign up

Export Citation Format

Share Document