Validation of a snow water equivalence algorithm over landfast first-year sea ice using RADARSAT-1

Author(s):  
J.J. Yackel ◽  
D.G. Barber
Keyword(s):  
Sea Ice ◽  
2008 ◽  
Vol 112 (9) ◽  
pp. 3656-3667 ◽  
Author(s):  
A. Langlois ◽  
R. Scharien ◽  
T. Geldsetzer ◽  
J. Iacozza ◽  
D.G. Barber ◽  
...  

2003 ◽  
Vol 17 (17) ◽  
pp. 3503-3517 ◽  
Author(s):  
D. G. Barber ◽  
J. Iacozza ◽  
A. E. Walker

2002 ◽  
Vol 48 (161) ◽  
pp. 177-191 ◽  
Author(s):  
Jean-Louis Tison ◽  
Christian Haas ◽  
Marcia M. Gowing ◽  
Suzanne Sleewaegen ◽  
Alain Bernard

AbstractDuring an ice-tank experiment, samples were taken to study the processes of acquisition and alteration of the gas properties in young first-year sea ice during a complete growth–warming–cooling cycle. The goal was to obtain reference levels for total gas content and concentrations of atmospheric gases (O2, N2, CO2) in the absence of significant biological activity. The range of total gas-content values obtained (3.5–18 mL STP kg−1) was similar to previous measurements or estimates. However, major differences occurred between current and quiet basins, showing the role of the water dynamics at the ice–water interface in controlling bubble nucleation processes. Extremely high CO2concentrations were observed in all the experiments (up to 57% in volume parts). It is argued that these could have resulted from two unexpected biases in the experimental settings. Concentrations in bubbles nucleated at the interface are controlled by diffusion both from the ice–water interface towards the well-mixed reservoir and between the interface water and the bubble itself. This double kinetic effect results in a transition of the gas composition in the bubbles from values close to solubility in sea water toward values close to atmospheric, as the ice cover builds up.


Sign in / Sign up

Export Citation Format

Share Document