Modeling fractional shrub/tree cover and multi-temporal changes in mire ecosystems using high-resolution digital surface models and CIR aerial images

Author(s):  
L.T. Waser ◽  
C. Ginzler ◽  
M. Kuechler ◽  
E. Baltsavias ◽  
H. Eisenbeiss
Land ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 62
Author(s):  
Alberto Alfonso-Torreño ◽  
Álvaro Gómez-Gutiérrez ◽  
Susanne Schnabel

Gullies are sources and reservoirs of sediments and perform as efficient transfers of runoff and sediments. In recent years, several techniques and technologies emerged to facilitate monitoring of gully dynamics at unprecedented spatial and temporal resolutions. Here we present a detailed study of a valley-bottom gully in a Mediterranean rangeland with a savannah-like vegetation cover that was partially restored in 2017. Restoration activities included check dams (gabion weirs and fascines) and livestock exclosure by fencing. The specific objectives of this work were: (1) to analyze the effectiveness of the restoration activities, (2) to study erosion and deposition dynamics before and after the restoration activities using high-resolution digital elevation models (DEMs), (3) to examine the role of micro-morphology on the observed topographic changes, and (4) to compare the current and recent channel dynamics with previous studies conducted in the same study area through different methods and spatio-temporal scales, quantifying medium-term changes. Topographic changes were estimated using multi-temporal, high-resolution DEMs produced using structure-from-motion (SfM) photogrammetry and aerial images acquired by a fixed-wing unmanned aerial vehicle (UAV). The performance of the restoration activities was satisfactory to control gully erosion. Check dams were effective favoring sediment deposition and reducing lateral bank erosion. Livestock exclosure promoted the stabilization of bank headcuts. The implemented restoration measures increased notably sediment deposition.


2016 ◽  
Vol 8 (6) ◽  
pp. 515 ◽  
Author(s):  
Adrian Fisher ◽  
Michael Day ◽  
Tony Gill ◽  
Adam Roff ◽  
Tim Danaher ◽  
...  

2008 ◽  
Vol 29 (5) ◽  
pp. 1261-1276 ◽  
Author(s):  
L. T. Waser ◽  
E. Baltsavias ◽  
K. Ecker ◽  
H. Eisenbeiss ◽  
C. Ginzler ◽  
...  

Author(s):  
N. Yastikli ◽  
H. Bayraktar ◽  
Z. Erisir

The digital surface models (DSM) are the most popular products to determine visible surface of Earth which includes all non-terrain objects such as vegetation, forest, and man-made constructions. The airborne light detection and ranging (LiDAR) is the preferred technique for high resolution DSM generation in local coverage. The automatic generation of the high resolution DSM is also possible with stereo image matching using the aerial images. The image matching algorithms usually rely on the feature based matching for DSM generation. First, feature points are extracted and then corresponding features are searched in the overlapping images. These image matching algorithms face with the problems in the areas which have repetitive pattern such as urban structure and forest. <br><br> The recent innovation in camera technology and image matching algorithm enabled the automatic dense DSM generation for large scale city and environment modelling. The new pixel-wise matching approaches are generates very high resolution DSMs which corresponds to the ground sample distance (GSD) of the original images. The numbers of the research institutes and photogrammetric software vendors are currently developed software tools for dense DSM generation using the aerial images. This new approach can be used high resolution DSM generation for the larger cities, rural areas and forest even Nation-wide applications. In this study, the performance validation of high resolution DSM generated by pixel-wise dense image matching in part of Istanbul was aimed. The study area in Istanbul is including different land classes such as open areas, forest and built-up areas to test performance of dense image matching in different land classes. The obtained result from this performance validation in Istanbul test area showed that, high resolution DSM which corresponds to the ground sample distance (GSD) of original aerial image can be generated successfully by pixel-wise dense image matching using commercial and research institution’s software.


2021 ◽  
Vol 15 (8) ◽  
pp. 3699-3717
Author(s):  
Joschka Geissler ◽  
Christoph Mayer ◽  
Juilson Jubanski ◽  
Ulrich Münzer ◽  
Florian Siegert

Abstract. We use high-resolution aerial photogrammetry to investigate glacier retreat in great spatial and temporal detail in the Ötztal Alps, a heavily glacierized area in Austria. Long-term in situ glaciological observations are available for this region as well as a multitemporal time series of digital aerial images with a spatial resolution of 0.2 m acquired over a period of 9 years. Digital surface models (DSMs) are generated for the years 2009, 2015, and 2018. Using these, glacier retreat, extent, and surface elevation changes of all 23 glaciers in the region, including the Vernagtferner, are analyzed. Due to different acquisition dates of the large-scale photogrammetric surveys and the glaciological data, a correction is successfully applied using a designated unmanned aerial vehicle (UAV) survey across a major part of the Vernagtferner. The correction allows a comparison of the mass balances from geodetic and glaciological techniques – both quantitatively and spatially. The results show a clear increase in glacier mass loss for all glaciers in the region, including the Vernagtferner, over the last decade. Local deviations and processes, such as the influence of debris cover, crevasses, and ice dynamics on the mass balance of the Vernagtferner, are quantified. Since those local processes are not captured with the glaciological method, they underline the benefits of complementary geodetic surveying. The availability of high-resolution multi-temporal digital aerial imagery for most of the glaciers in the Alps provides opportunities for a more comprehensive and detailed analysis of climate-change-induced glacier retreat and mass loss.


Author(s):  
I. V. Florinsky ◽  
T. N. Skrypitsyna ◽  
D. P. Bliakharskii ◽  
O. T. Ishalina ◽  
A. S. Kiseleva

Abstract. Glaciated areas are important targets for interdisciplinary research. In the last quarter of the 20th century, there has been a significant shift in glacier observation approaches from direct fieldwork to remote sensing. Over the past 15 years, unmanned aerial systems have been increasingly used for this purpose. In this article, we briefly describe a newly launched Russian–Chinese project aimed at developing a theory and methodology for digital modeling and analysis of the glacier microtopography using very high resolution data from unmanned aerial surveys. We argue the relevance of the study and review key publications on the application of digital terrain modeling and geomorphometry in glaciology. Next, we discuss the aim of the project and tasks performed by the Russian side, as well as materials and methods used in the study. As initial data, we use multi-temporal, digital aerial images of very high resolution (5 cm) collected by the unmanned aerial survey of the ice sheet and glaciers near the Larsemann Hills, East Antarctic. Finally, we present some examples for geomorphometric analysis of glacier microtopography including snow/ice features of eolian origin.


2017 ◽  
Vol 927 (9) ◽  
pp. 22-29
Author(s):  
V.I. Kravtsovа ◽  
E.R. Chalova

Anapa bay bar is a valuable recreational-medical resource. Digital landscape-morphological mapping of its the Northern-Western part was created by digital aero survey materials for monitoring of its statement. Compiled maps show that in the Western part of region dune belt is degradated, front dune hills destroyed due to spreading of settlement Veselovka buildings to beach, and due to mass enactments carrying out at bay bar of lake Solenoe. Here it is necessary to decide the problem of defense from waves flooding by construction of artificial hills. The middle part of region, around Bugaz lagoon, is using for unregulated recreation of extreme sportsmen – windsurfing and kiting – with seasonal recreation in camping from tent-city and campers. Many short roads to sea beach, orthogonal to coast line, have been transformed to corridors of blowing and sea waves interaction to lagoon lowland with dune belt destroying. In the Eastern part of region, at Bugaz bay bar, dune belt is conserve, it changes under natural sea and wind processes action. At some places sea waves are erode windward front dune slope. Just everywhere sand accumulative trains are forming at leeward slope of front dune. Showed peculiarities of landscape morphological structure mast be taken in account due treatment of measures for bay bar defense and keeping.


Sign in / Sign up

Export Citation Format

Share Document