scholarly journals Analyzing glacier retreat and mass balances using aerial and UAV photogrammetry in the Ötztal Alps, Austria

2021 ◽  
Vol 15 (8) ◽  
pp. 3699-3717
Author(s):  
Joschka Geissler ◽  
Christoph Mayer ◽  
Juilson Jubanski ◽  
Ulrich Münzer ◽  
Florian Siegert

Abstract. We use high-resolution aerial photogrammetry to investigate glacier retreat in great spatial and temporal detail in the Ötztal Alps, a heavily glacierized area in Austria. Long-term in situ glaciological observations are available for this region as well as a multitemporal time series of digital aerial images with a spatial resolution of 0.2 m acquired over a period of 9 years. Digital surface models (DSMs) are generated for the years 2009, 2015, and 2018. Using these, glacier retreat, extent, and surface elevation changes of all 23 glaciers in the region, including the Vernagtferner, are analyzed. Due to different acquisition dates of the large-scale photogrammetric surveys and the glaciological data, a correction is successfully applied using a designated unmanned aerial vehicle (UAV) survey across a major part of the Vernagtferner. The correction allows a comparison of the mass balances from geodetic and glaciological techniques – both quantitatively and spatially. The results show a clear increase in glacier mass loss for all glaciers in the region, including the Vernagtferner, over the last decade. Local deviations and processes, such as the influence of debris cover, crevasses, and ice dynamics on the mass balance of the Vernagtferner, are quantified. Since those local processes are not captured with the glaciological method, they underline the benefits of complementary geodetic surveying. The availability of high-resolution multi-temporal digital aerial imagery for most of the glaciers in the Alps provides opportunities for a more comprehensive and detailed analysis of climate-change-induced glacier retreat and mass loss.

2020 ◽  
Author(s):  
Joschka Geissler ◽  
Christoph Mayer ◽  
Juilson Jubanski ◽  
Ulrich Münzer ◽  
Florian Siegert

Abstract. Glaciers all over the world experience an increasing mass loss during recent decades due to change in the global climate. This leads to considerable environmental consequences in the densely populated Alps and many other mountain ranges in the world. We used high-resolution aerial photogrammetry within the AlpSenseBench project to investigate glacier retreat in great spatial and temporal detail in the Ötztaler Alps, a significant glacier area in Austria. Long-term in situ glaciological observations are available for this region, and a multitemporal time series of digital aerial images with a spatial resolution of 20 cm acquired over a period of 10 years exists. Glacier retreat of all 25 glaciers in the region, including the Vernagtferner, was analyzed by investigating glacier extent and surface elevation changes, derived from the aerial images by digital surface model (DSM) generation. Due to different acquisition dates of the large scale photogrammetric surveys and the glaciological data, a correction was established using a dedicated unmanned aerial vehicle (UAV) survey across the major part of the Vernagtferner. This allowed us to compare the mass balances from geodetic and glaciological techniques, which reveals the potentials of the combination of these two techniques for gaining a better insight into glacier changes and its spatial distribution. The results show a clear increase of glacier mass loss for all glaciers in the region, including the Vernagtferner over the last decade. Additionally, the influence of debris-cover on mass balance, as well as the magnitude of dynamic processes, could be quantified. The comparison of geodetic elevation differences and the interpolated glaciological data reveals that there exists a high potential in detecting local peculiarities of mass balance distribution and for correcting small scale deviations, not revealed in the interpolated glaciological information. The availability of high resolution multi-temporal digital aerial imagery for most of the glaciers in the Alps will provide a more comprehensive and detailed analysis of climate change-induced glacier retreat.


2016 ◽  
Vol 57 (71) ◽  
pp. 273-281 ◽  
Author(s):  
Melanie Rankl ◽  
Matthias Braun

AbstractSnow cover and glaciers in the Karakoram region are important freshwater resources for many down-river communities as they provide water for irrigation and hydropower. A better understanding of current glacier changes is hence an important informational baseline. We present glacier elevation changes in the central Karakoram region using TanDEM-X and SRTM/X-SAR DEM differences between 2000 and 2012. We calculated elevation differences for glaciers with advancing and stable termini or surge-type glaciers separately using an inventory from a previous study. Glaciers with stable and advancing termini since the 1970s showed nearly balanced elevation changes of -0.09 ±0.12 m a-1 on average or mass budgets of -0.01 ±0.02Gt a-1 (using a density of 850 kg m-3). Our findings are in accordance with previous studies indicating stable or only slightly negative glacier mass balances during recent years in the Karakoram. The high-resolution elevation changes revealed distinct patterns of mass relocation at glacier surfaces during active surge cycles. The formation of kinematic waves at quiescent surge-type glaciers could be observed and points towards future active surge behaviour. Our study reveals the potential of the TanDEM-X mission to estimate geodetic glacier mass balances, but also points to still existing uncertainties induced by the geodetic method.


Land ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 62
Author(s):  
Alberto Alfonso-Torreño ◽  
Álvaro Gómez-Gutiérrez ◽  
Susanne Schnabel

Gullies are sources and reservoirs of sediments and perform as efficient transfers of runoff and sediments. In recent years, several techniques and technologies emerged to facilitate monitoring of gully dynamics at unprecedented spatial and temporal resolutions. Here we present a detailed study of a valley-bottom gully in a Mediterranean rangeland with a savannah-like vegetation cover that was partially restored in 2017. Restoration activities included check dams (gabion weirs and fascines) and livestock exclosure by fencing. The specific objectives of this work were: (1) to analyze the effectiveness of the restoration activities, (2) to study erosion and deposition dynamics before and after the restoration activities using high-resolution digital elevation models (DEMs), (3) to examine the role of micro-morphology on the observed topographic changes, and (4) to compare the current and recent channel dynamics with previous studies conducted in the same study area through different methods and spatio-temporal scales, quantifying medium-term changes. Topographic changes were estimated using multi-temporal, high-resolution DEMs produced using structure-from-motion (SfM) photogrammetry and aerial images acquired by a fixed-wing unmanned aerial vehicle (UAV). The performance of the restoration activities was satisfactory to control gully erosion. Check dams were effective favoring sediment deposition and reducing lateral bank erosion. Livestock exclosure promoted the stabilization of bank headcuts. The implemented restoration measures increased notably sediment deposition.


2021 ◽  
Vol 13 (13) ◽  
pp. 2473
Author(s):  
Qinglie Yuan ◽  
Helmi Zulhaidi Mohd Shafri ◽  
Aidi Hizami Alias ◽  
Shaiful Jahari Hashim

Automatic building extraction has been applied in many domains. It is also a challenging problem because of the complex scenes and multiscale. Deep learning algorithms, especially fully convolutional neural networks (FCNs), have shown robust feature extraction ability than traditional remote sensing data processing methods. However, hierarchical features from encoders with a fixed receptive field perform weak ability to obtain global semantic information. Local features in multiscale subregions cannot construct contextual interdependence and correlation, especially for large-scale building areas, which probably causes fragmentary extraction results due to intra-class feature variability. In addition, low-level features have accurate and fine-grained spatial information for tiny building structures but lack refinement and selection, and the semantic gap of across-level features is not conducive to feature fusion. To address the above problems, this paper proposes an FCN framework based on the residual network and provides the training pattern for multi-modal data combining the advantage of high-resolution aerial images and LiDAR data for building extraction. Two novel modules have been proposed for the optimization and integration of multiscale and across-level features. In particular, a multiscale context optimization module is designed to adaptively generate the feature representations for different subregions and effectively aggregate global context. A semantic guided spatial attention mechanism is introduced to refine shallow features and alleviate the semantic gap. Finally, hierarchical features are fused via the feature pyramid network. Compared with other state-of-the-art methods, experimental results demonstrate superior performance with 93.19 IoU, 97.56 OA on WHU datasets and 94.72 IoU, 97.84 OA on the Boston dataset, which shows that the proposed network can improve accuracy and achieve better performance for building extraction.


Author(s):  
Y. A. Lumban-Gaol ◽  
A. Murtiyoso ◽  
B. H. Nugroho

Since its first inception, aerial photography has been used for topographic mapping. Large-scale aerial photography contributed to the creation of many of the topographic maps around the world. In Indonesia, a 2013 government directive on spatial management has re-stressed the need for topographic maps, with aerial photogrammetry providing the main method of acquisition. However, the large need to generate such maps is often limited by budgetary reasons. Today, SfM (Structure-from-Motion) offers quicker and less expensive solutions to this problem. However, considering the required precision for topographic missions, these solutions need to be assessed to see if they provide enough level of accuracy. In this paper, a popular SfM-based software Agisoft PhotoScan is used to perform bundle adjustment on a set of large-scale aerial images. The aim of the paper is to compare its bundle adjustment results with those generated by more classical photogrammetric software, namely Trimble Inpho and ERDAS IMAGINE. Furthermore, in order to provide more bundle adjustment statistics to be compared, the Damped Bundle Adjustment Toolbox (DBAT) was also used to reprocess the PhotoScan project. Results show that PhotoScan results are less stable than those generated by the two photogrammetric software programmes. This translates to lower accuracy, which may impact the final photogrammetric product.


2009 ◽  
Vol 9 (2) ◽  
pp. 433-439 ◽  
Author(s):  
A. Corsini ◽  
L. Borgatti ◽  
F. Cervi ◽  
A. Dahne ◽  
F. Ronchetti ◽  
...  

Abstract. This paper deals with the use of time-series of High-Resolution Digital Elevation Models (HR DEMs) obtained from photogrammetry and airborne LiDAR coupled with aerial photos, to analyse the magnitude of recently reactivated large scale earth slides – earth flows located in the northern Apennines of Italy. The landslides underwent complete reactivation between 2001 and 2006, causing civil protection emergencies. With the final aim to support hazard assessment and the planning of mitigation measures, high-resolution DEMs are used to identify, quantify and visualize depletion and accumulation in the slope resulting from the reactivation of the mass movements. This information allows to quantify mass wasting, i.e. the amount of landslide material that is wasted during reactivation events due to stream erosion along the slope and at its bottom, resulting in sediment discharge into the local fluvial system, and to assess the total volumetric magnitude of the events. By quantifying and visualising elevation changes at the slope scale, results are also a valuable support for the comprehension of geomorphological processes acting behind the evolution of the analysed landslides.


2018 ◽  
Vol 43 (2) ◽  
pp. 193-214 ◽  
Author(s):  
Allan Derrien ◽  
Nicolas Villeneuve ◽  
Aline Peltier ◽  
Laurent Michon

Piton de la Fournaise is one of the world’s most active and visited volcanoes. Its summit crater (Cratère Dolomieu), the main tourist attraction, underwent a major caldera collapse in 2007 and its rim is not yet stabilized. In order to assess the caldera rim instability risk for visitors, we followed its structural evolution from 2007 to 2015. Using aerial photogrammetry campaigns, we mapped the unstable sites very precisely, carried out a quantitative analysis of the temporal evolution of these instabilities, and assessed the risks for visitors. Considering the 2008–2015 period, four sites close to the crater’s edge showed significant horizontal ground motion (0.5–2 m), fracture widening (average of 0.3–0.56 m) and large-scale mass wasting volumes (total of 1.8±0.1 × 106 m3). We infer two different processes at work: (1) to the west and north, toppling of the basalt units occurs after periods of fracture widening due to the combined effect of magmatic intrusions and long-term inflation/deflation cycles; (2) to the south and east, parts of the caldera rim slowly slide towards the caldera centre, with significant accelerations during periods of enhanced volcanic activity (in 2008–2010 and 2014–2015). The official observation platform is the most stable zone to overlook the Cratère Dolomieu. By contrast, the most frequently visited area of the rim (northwest) outside the official platform is also the most unstable.


2007 ◽  
Vol 3 (S242) ◽  
pp. 251-255
Author(s):  
Roberta M. Humphreys

AbstractThe cool hypergiants are the most luminous known stars in the upper HR Diagram in the apparent temperature range represented by spectral types A to M. Most of the stars in this regime are unstable as evidenced by their high mass loss rates, variability, and in some cases large IR excesses and circumstellar ejecta. We have obtained high resolution multi-wavelength images with HST/WFPC2 of several of the most known evolved cool stars including several well known stellar masers. VX Sgr and S Per were marginally resolved, while NML Cyg has a peculiar asymmetric envelope that has been shaped by its environment. The powerful maser sources IRC+10420 and VY CMa have extensive and complex circumstellar ejecta due to high mass loss episodes apparently driven by large-scale convective activity.


2021 ◽  
Vol 13 (4) ◽  
pp. 692
Author(s):  
Yuwei Jin ◽  
Wenbo Xu ◽  
Ce Zhang ◽  
Xin Luo ◽  
Haitao Jia

Convolutional Neural Networks (CNNs), such as U-Net, have shown competitive performance in the automatic extraction of buildings from Very High-Resolution (VHR) aerial images. However, due to the unstable multi-scale context aggregation, the insufficient combination of multi-level features and the lack of consideration of the semantic boundary, most existing CNNs produce incomplete segmentation for large-scale buildings and result in predictions with huge uncertainty at building boundaries. This paper presents a novel network with a special boundary-aware loss embedded, called the Boundary-Aware Refined Network (BARNet), to address the gap above. The unique properties of the proposed BARNet are the gated-attention refined fusion unit, the denser atrous spatial pyramid pooling module, and the boundary-aware loss. The performance of the BARNet is tested on two popular data sets that include various urban scenes and diverse patterns of buildings. Experimental results demonstrate that the proposed method outperforms several state-of-the-art approaches in both visual interpretation and quantitative evaluations.


Sign in / Sign up

Export Citation Format

Share Document