check dams
Recently Published Documents


TOTAL DOCUMENTS

260
(FIVE YEARS 111)

H-INDEX

26
(FIVE YEARS 8)

2021 ◽  
Vol 21 (6) ◽  
pp. 71-84
Author(s):  
Kihwan Lee ◽  
Choongsik Woo

Check dams are a typical structural approach used in watershed disaster management systems. Currently, approximately 12,000 check dams have been estimated to be constructed on mountain streams in Korea. More than 90% of these have been constructed in the last 20 years. This rapid increase over a short period of time has attracted attention to the necessity of maintenance strategies for check dams. The purpose of this study is to examine the applicability of the exterior condition assessment to evaluate the degree of deterioration in check dams. We classify the typical damage types of check dams and describe its key characteristics. Moreover, we apply a modified version of the condition assessment for large dams to meet the characteristics of check dams.


Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1264
Author(s):  
Fabing Xie ◽  
Guangju Zhao ◽  
Xingmin Mu ◽  
Peng Tian ◽  
Peng Gao ◽  
...  

Soil erosion has become the dominant environmental issue endangering sustainable development in agriculture and the ecosystem on the Loess Plateau. Determination of watershed soil erosion rates and sediment yields is essential for reasonable utilization of water resources and soil loss control. In this study, we employed unmanned aerial vehicles (UAVs) and structure-from-motion (SfM) photogrammetry to determine the sediment yields in 24 dam-controlled watersheds in the Pisha sandstone region of the northern Loess Plateau. High differences in total sediment were trapped before the check dams due to their running periods and sediment yields. The estimated specific sediment yield ranged from 34.32 t/(ha∙a) to 123.80 t/(ha∙a) with an average of 63.55 t/(ha∙a), which indicated that the Pisha sandstone region had an intense soil erosion rate. Furthermore, the modified Sediment Distributed Delivery (SEDD) model was applied to identify the erosion-prone areas in the watersheds, and the sediment retained in the check dams were used for model calibration. The performance of the model was acceptable, and the modeling results indicated that the steep Pisha sandstone was the major sediment source for the watersheds, accounting for approximately 87.37% of the sediment yield. Catchment area, erosive precipitation, and badland proportion were the key factors for sediment yield in the dam-controlled watersheds of the Pisha sandstone region, according to multiple regression analyses. These findings indicated that the modified SEDD model is very efficient in identifying spatial heterogeneities of sediment yield in the watershed but requires comprehensive calibration and validation with long-term observations. The Pisha sandstone region is still the key area of soil erosion control in the Loess Plateau, which needs more attention for soil and water conservation due to high sediment yield.


Author(s):  
Bagyaraj Murugesan ◽  
Tenaw Mengistie Alemayehu ◽  
Gnanachandrasamy Gopalakrishnan ◽  
Sang Yong Chung ◽  
Venkatramanan Senapathi ◽  
...  

2021 ◽  
Vol 11 (12) ◽  
Author(s):  
Md. Iquebal Hossain ◽  
Md. Niamul Bari ◽  
Md. Shafi Uddin Miah

AbstractThis study focuses on the Barind tract, a drought prone area situated in the north-west region of Bangladesh where inadequate rainfall and limited surface water have created high dependence on groundwater for irrigation and other purposes, leading to significant declines in groundwater level. Managed aquifer recharge (MAR) offers a potential solution to restore groundwater levels. This study sets out to identify the opportunities and challenges for implementing MAR in the Barind tract. To accomplish this aim, different data sets including bore log lithology, rainfall, groundwater levels, information about re-excavated ponds, dighis, kharies, beels, check dams, rubber dams, dug wells and other necessary information were collected from the Barind Multipurpose Development Authority (BMDA) and other sources and analyzed. Major opportunities for MAR are identified for about 2000 km of re-excavated kharies (canals) containing about 750 check dams, more than 3000 re-excavated ponds, a number of beels (comparatively large marshes) and other water bodies which are used to conserve runoff storm water for supplementary irrigation. The conserved water can be used for groundwater recharge and subsequently abstracted for irrigation. Furthermore, roof-top rain water from buildings can also be used for groundwater recharge purposes. In contrast, the major challenges include the high turbidity of storm water runoff leading to clogging of MAR structures, inadequacy of conventional direct surface methods of recharge due to the presence of a 15 m or more thick upper clay layer with limited percolation capacity, and lack of practical knowledge on MAR. Therefore, overcoming the challenges for MAR application is a prerequisite to maximize the opportunities from MAR that can support the sustainable use of groundwater resources.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2644
Author(s):  
Leichao Bai ◽  
Juying Jiao ◽  
Nan Wang ◽  
Yulan Chen

Check dams play an irreplaceable role in soil and water conservation in the Chinese Loess Plateau region. However, there are few analyses on the connection between check dams and the downstream channel and the impact on structural connectivity and sediment interception efficiency. Based on a field survey, this study classified the connection mode between check dams and the downstream channel, and the actual control area percentage by discharge canal in dam land was used to quantitatively evaluate the degree of the structural connectivity of sediment between the check dam and the downstream channel. The analysis results show that the connection mode can be divided into eleven categories with different structural connectivity. The different connection modes and its combination mode of check dams and downstream channels in dam systems have a large difference, and the structural connectivity of the dam system is less than or equal to that of the sum of single check dams in a watershed. The degree of structural connectivity of a dam system will be greatly reduced if there is a main control check dam with no discharge canal in the lower reaches of the watershed. Compared with a single check dam, the structural connectivity of a dam system is reduced by 0–42.38%, with an average of 11.18%. According to the difference in connection mode and structural connectivity of check dams and dam systems in the four typical small watersheds, the optimization methods for connection mode in series, parallel and hybrid dam systems were proposed. The research results can provide a reference for the impact of a check dam on the sediment connectivity and the sediment interception efficiency in a watershed and can also guide the layout of a dam system and the arrangement of drainage facilities.


2021 ◽  
Author(s):  
Liqun Lyu ◽  
Mengzhen Xu ◽  
Guanyu Zhou ◽  
Zhaoyin Wang

Abstract Debris flows in waterways can transport large amounts of sediment downstream, which can cause serious damage and economic losses. The vegetation cover in the valley of the Xiaojiang River in Yunnan Province, China—classified as a dry-hot valley—was significantly reduced by logging in the 1950s. Soil erosion intensified and 107 gullies developed, which led to debris flows along the 86 km length of the river. Jiangjia Gully is a tributary of the Xiaojiang River. Historically, debris flows have occurred frequently, blocking the Xiaojiang River seven times between 1957 and 2000. Since 2000, the construction of check dams and afforestation have decreased the volume of debris flows in the three tributaries of Jiangjia Gully. However, different combinations of check dams and afforestation were adopted in the three tributaries of Jiangjia Gully, which has led to the different trends in debris flows behaviour. A new method was established to evaluate the mitigative effect of check dams and afforestation on debris flows. We found that the debris flow volume was proportional to the gravity energy of soil and rock on the gully bank and inversely proportional to the vegetation coverage in a dry-hot valley setting. The method revealed that under different gravity energy conditions, the implementation order of check dam construction and afforestation is important for debris flow mitigation.


CATENA ◽  
2021 ◽  
Vol 204 ◽  
pp. 105390
Author(s):  
Manuel Esteban Lucas-Borja ◽  
Guillaume Piton ◽  
Yang Yu ◽  
Carlos Castillo ◽  
Demetrio Antonio Zema
Keyword(s):  

2021 ◽  
Vol 35 (11) ◽  
pp. 3845-3860
Author(s):  
Lingqi Li ◽  
Kai Wu ◽  
Enhui Jiang ◽  
Huijuan Yin ◽  
Yuanjian Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document