Imaging Geometry Analysis of 3D SAR using Linear Array Antennas

Author(s):  
Yanping Wang ◽  
Bin Wang ◽  
Wen Hong ◽  
Lei Du ◽  
Yirong Wu
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tanzeela Mitha ◽  
Maria Pour

AbstractA novel approach to linear array antennas with adaptive inter-element spacing is presented for the first time. The main idea is based upon electronically displacing the phase center location of the antenna elements, which determine their relative coordinates in the array configuration. This is realized by employing dual-mode microstrip patch antennas as a constitutive element, whose phase center location can be displaced from its physical center by simultaneously exciting two modes. The direction and the amount of displacement is controlled by the amplitude and phase of the modes at the element level. This in turn facilitates reconfiguring the inter-element spacing at the array level. For instance, a uniformly-spaced array could be electronically transformed into a non-uniform one without any mechanical means. The proposed idea is demonstrated in two- and three-element linear antenna arrays. The technique has the potential to control the radiation characteristics such as sidelobe levels, position of the nulls, and the beamwidths in small arrays, which are useful for adaptively controlling the array performance in emerging wireless communication systems and radars.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2477 ◽  
Author(s):  
Jubo Hao ◽  
Jin Li ◽  
Yiming Pi

Due to the non-contact detection ability of radar and the harmlessness of terahertz waves to the human body, three-dimensional (3D) imaging using terahertz synthetic aperture radar (SAR) is an efficient method of security detection in public areas. To achieve high-resolution and all aspect imaging, circular trajectory movement of radar and linear sensor array along the height direction were used in this study. However, the short wavelength of terahertz waves makes it practically impossible for the hardware to satisfy the half-wavelength spacing condition to avoid grating lobes. To solve this problem, a sparse linear array model based on the equivalent phase center principle was established. With the designed imaging geometry and corresponding echo signal model, a 3D imaging algorithm was derived. Firstly, the phase-preserving algorithm was adopted to obtain the 2D image of the ground plane for each sensor. Secondly, the sparse recovery method was applied to accomplish the scattering coefficient reconstruction along the height direction. After reconstruction of all the range-azimuth cells was accomplished, the final 3D image was obtained. Numerical simulations and experiments using terahertz radar were performed. The imaging results verify the effectiveness of the 3D imaging algorithm for the proposed model and validate the feasibility of terahertz radar applied in security detection.


2016 ◽  
Vol 13 (10) ◽  
pp. 1502-1506 ◽  
Author(s):  
Aaron Angel Salas-Sanchez ◽  
Maria Elena Lopez-Martin ◽  
Juan Antonio Rodriguez-Gonzalez ◽  
Francisco Jose Ares-Pena

2013 ◽  
Vol 681 ◽  
pp. 175-180
Author(s):  
Jun Zhao ◽  
Xu Hang

The clutter distribution of airborne radar with non-sidelooking uniform linear array antennas varies with ranges and samples in different range gates are not independent identically distributed vectors, so that the statistical STAP methods degrade greatly. In this paper, an improved clutter range dependence compensation method for airborne radar with uniform linear array is proposed. This method involves in a preprocessing with ADC method to align the mainlobe of clutter spectrum in different range gates and subsequently clutter suppression in other azimuths with EDBU technology. Simulation results show the proposed method can reduce the clutter spectrum dispersion significantly and outperform conventional local compensation methods.


Sign in / Sign up

Export Citation Format

Share Document