Quantitative modeling of soil erosion by water in large-scale river basin using remotely sensed data

Author(s):  
Qiang Zhu ◽  
Xiuwan Chen ◽  
Qixiang Fan ◽  
Heping Jin
CATENA ◽  
1999 ◽  
Vol 37 (3-4) ◽  
pp. 291-308 ◽  
Author(s):  
S.M. de Jong ◽  
M.L. Paracchini ◽  
F. Bertolo ◽  
S. Folving ◽  
J. Megier ◽  
...  

Author(s):  
Mohamed Rached Boussema

In this chapter, the author presents a review of the GIS use during the research carried out during the past three decades dealing with land degradation. The objective is to assess the viability of applying GIS with different modes of remotely sensed data acquisition for quantifying land degradation in Tunisia. Various GIS based modelling approaches for soil erosion hazard assessment such as empirical and physical distributed are discussed. Five case studies are selected from several projects. They apply different methods for land degradation investigation at different scales using GIS and remotely sensed data. The research dealt mainly with: 1) The prediction of soil erosion at the regional level related to conservation techniques; 2) The quantification of soil erosion at the gully level based on GIS, digital photogrammetry and fieldwork; 3) The monitoring of gully erosion using GIS combined to images acquired by a non-metric digital camera on board a kite.


2016 ◽  
Vol 65 (2) ◽  
pp. 224-228
Author(s):  
Mojtaba Rezaei ◽  
Ali Shahnazari ◽  
Mahmoud Raeini Sarjaz ◽  
Majid Vazifedoust

2021 ◽  
Vol 13 (16) ◽  
pp. 3166
Author(s):  
Jash R. Parekh ◽  
Ate Poortinga ◽  
Biplov Bhandari ◽  
Timothy Mayer ◽  
David Saah ◽  
...  

The large scale quantification of impervious surfaces provides valuable information for urban planning and socioeconomic development. Remote sensing and GIS techniques provide spatial and temporal information of land surfaces and are widely used for modeling impervious surfaces. Traditionally, these surfaces are predicted by computing statistical indices derived from different bands available in remotely sensed data, such as the Landsat and Sentinel series. More recently, researchers have explored classification and regression techniques to model impervious surfaces. However, these modeling efforts are limited due to lack of labeled data for training and evaluation. This in turn requires significant effort for manual labeling of data and visual interpretation of results. In this paper, we train deep learning neural networks using TensorFlow to predict impervious surfaces from Landsat 8 images. We used OpenStreetMap (OSM), a crowd-sourced map of the world with manually interpreted impervious surfaces such as roads and buildings, to programmatically generate large amounts of training and evaluation data, thus overcoming the need for manual labeling. We conducted extensive experimentation to compare the performance of different deep learning neural network architectures, optimization methods, and the set of features used to train the networks. The four model configurations labeled U-Net_SGD_Bands, U-Net_Adam_Bands, U-Net_Adam_Bands+SI, and VGG-19_Adam_Bands+SI resulted in a root mean squared error (RMSE) of 0.1582, 0.1358, 0.1375, and 0.1582 and an accuracy of 90.87%, 92.28%, 92.46%, and 90.11%, respectively, on the test set. The U-Net_Adam_Bands+SI Model, similar to the others mentioned above, is a deep learning neural network that combines Landsat 8 bands with statistical indices. This model performs the best among all four on statistical accuracy and produces qualitatively sharper and brighter predictions of impervious surfaces as compared to the other models.


Sign in / Sign up

Export Citation Format

Share Document