the huaihe river
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 39)

H-INDEX

18
(FIVE YEARS 3)

Author(s):  
Jiale Liang ◽  
Sipei Pan ◽  
Wanxu Chen ◽  
Jiangfeng Li ◽  
Ting Zhou

The booming population and accelerating urbanization in the Huaihe River Basin have sped up the land use transformation and the cultivated land fragmentation (CLF), seriously impeded the advancement of agricultural modernization, and threatened regional stability and national food security as well. The analysis of CLF degree and its spatiotemporal distribution characteristics, along with the influencing factors in the Huaihe River Basin, is of great significance for promoting the intensive and efficient utilization of cultivated land resources and maintaining food security. Previous studies lack the measurement and cause analysis of CLF in Huaihe River Basin. To bridge the gap, this study introduces Fragstats4.2 and ArcGIS10.3 to analyze the spatiotemporal characteristics of CLF in county units in the Huaihe River Basin from 2000 to 2018 through the Lorentz curve, entropy method, and spatial auto-correlation method while the causes of the spatiotemporal differentiation of CLF in the basin were explored with the help of a geographic detector. The results show that the spatial distribution of cultivated land in the Huaihe River Basin is relatively balanced, and the Gini coefficients of cultivated land from 2000 to 2018 were 0.105, 0.108, and 0.113, respectively. More than 56% of the counties in the basin have a location entropy greater than 1. the percentage of landscape, area-weighted mean patch area, patch cohesion index, and aggregation index decrease year by year while the patch density and splitting index show an upward trend. The landscape pattern of cultivated land is highly complex, and the overall fragmentation degree is increasing. The county distribution pattern of the CLF degree with random and agglomeration is generally stable. The spatiotemporal differentiation of CLF in the Huaihe River Basin is affected by multiple factors, among which the influences of the normalized difference vegetation index, per capita cultivated land area, and intensity of human activity obviously stronger than other factors, and the contribution rate of the factors reached more than 0.4. The interaction effect among the factors is stronger than that of single factor, with dual-factor enhancement and nonlinear enhancement dominating. The results of this study have important implications for optimizing the agricultural structure in the Huaihe River Basin and alleviating the CLF in important grain production areas.


Author(s):  
Yun Zhang ◽  
Wanli Gao ◽  
Yuying Li ◽  
Yeqing Jiang ◽  
Xiaonuo Chen ◽  
...  

As an important indicator of phytoplankton in water quality evaluation, the phytoplankton community structure is very sensitive to changes in water quality, and analyzing their community composition and function is of great significance for the ecological management and maintenance of watershed environments. To understand the environment and ecological status as well as reconstruct or restore a healthy aquatic ecosystem in the Huaihe River Basin in China, a comprehensive phytoplankton survey was conducted in the main stream and main tributaries of the Huaihe River in 2019. A total of 266 species or genera of phytoplankton were identified, mainly belonging to Bacillariophyta and Chlorophyta. The number of phytoplankton species upstream and downstream was higher than that in the middle. The results of phytoplankton biomass showed significant spatial differences in different river reaches (p < 0.05). The identified phytoplankton functional groups (FGs) were divided into 27 groups, including 16 representative functional groups (RFGs), followed by A, B, F, G, H1, J, K, LM, LO, M, MP, P, T, TB, WO and X2. The mean values of the Shannon–Wiener index and Margalef index were 2.47 and 2.50, respectively, showing that most of the water in the Huaihe River Basin was in a state of moderate nutritional status. The results of this study provided a reference for studying the composition and distribution of phytoplankton communities, nutrient status, and pollution levels in the Huaihe River Basin, as well as in other similar watersheds.


Author(s):  
Jinxin Zhang ◽  
Liangmin Gao ◽  
Zhendong Pang ◽  
Linghan Liu ◽  
Xiaoqing Chen ◽  
...  

Farmland soil samples from the northern and southern banks of the Wangbeng section of the Huaihe River Basin, China, were collected and treated with three different low-molecular-weight organic acids (LMWOAs) (malic acid, citric acid, oxalic acid). This study aimed to determine how these acids affect soil phosphorus activation. The results showed that the average activation rate of total phosphorus, inorganic phosphorus, Fe/Al-P and Ca-P in soil samples from the southern bank treated with malic and citric acid was above 162%, except for organic phosphorus, with the highest at 192.04%. The three organic acids displayed significantly greater phosphorus activation in the northern bank soil samples than those of the southern bank. However, the overall average activation rate in the northern bank soils was lower than that of the southern bank. The four factors of phosphorus species, acid species, acid concentration, and treatment time had significant effects on phosphorus activation in the soils from both banks. This study showed that the three organic acids significantly activated inert phosphorus in the soil. Among them, malic acid and citric acid had a stronger effect on activating soil phosphorus and increased the available soil phosphorus utilisation rate.  


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1446
Author(s):  
Guohua Fang ◽  
Xin Li ◽  
Ming Xu ◽  
Xin Wen ◽  
Xianfeng Huang

With the aggravation of the ocean–atmosphere cycle anomaly, understanding the potential teleconnections between climate indices and drought/flood conditions can help us know natural hazards more comprehensively to better cope with them. This study aims at exploring the spatiotemporal patterns of drought and its multi-scale relations with typical climate indices in the Huaihe River Basin. First, the spatial patterns were identified based on the seasonal Standardized Precipitation Index (SPI)-3 during 1956–2020 by means of the Empirical Orthogonal Function (EOF). The two leading sub-regions of spring and winter droughts were determined. Then, we extracted the periodicity of spring and winter SPI-3 series and the corresponding seasonal climate indices (Arctic Oscillation (AO), Bivariate El Niño–Southern Oscillation (ENSO)Timeseries (BEST), North Atlantic Oscillation (NAO), Niño3, and Southern Oscillation Index (SOI)) and the sunspot number by using the Continuous Wavelet Transform (CWT). We further explored the teleconnections between spring drought, winter drought, and climate indices and the sunspot number by using Cross Wavelet Transform (XWT) and Wavelet Coherence (WTC) analyses. The results show that there are in-phase multi-scale relations between spring/winter PC1 and AO, BEST, and Niño3, of which the climate indices lead spring PC1 by 1.5–2 years and the climate indices lag winter PC1 by 1.5–3 years. Anti-phase relations between spring PCs and SOI and the sunspot number were observed. NAO mainly affects the interdecadal variation in spring drought, while AO and Niño3 focus on the interannual variation. In addition, Niño3 and SOI are more related to the winter drought on interdecadal scales. Moreover, there is a positive correlation between the monthly average precipitation/temperature and Niño3 with a lag of 3 months. The results are beneficial for improving the accuracy of drought prediction, considering taking NAO, AO, and Niño3 as predictors for spring drought and Niño3 and SOI for winter drought. Hence, valuable information can be provided for the management of water resources as well as early drought warnings in the basin.


Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1168
Author(s):  
Wei-Ling Hsu ◽  
Xijuan Shen ◽  
Haiying Xu ◽  
Chunmei Zhang ◽  
Hsin-Lung Liu ◽  
...  

The evaluations of resource and environment carrying capacity and territorial development suitability, also referred to as “double evaluations”, have been taken by China as an important direction in territorial space planning. Based on the evaluation of resource and environment carrying capacity, the double evaluations can contribute to protecting ecological safety and territorial safety and promoting regional sustainable development. The focus of this study was to integratedly evaluate the resource and environment carrying capacity of the Huaihe River Ecological and Economic Belt. First, the overall weights of the factors at the dimension level and the index level in the established integration evaluation system were calculated with the fuzzy analytical hierarchy process (FAHP) method; and then, using the linear weighted function, the overall resource and environment carrying capacities of 25 cities in the belt were calculated. On that basis, the resource and environment carrying capacity evaluation model was established. Through model analysis, this study comprehensively investigated the resource and environment carrying capacity of the Huaihe River Eco-economic Belt and provided a foundation for the future territorial space planning and layout of the Huaihe River Eco-economic Belt.


Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1130
Author(s):  
Qinghua Pang ◽  
Weimo Zhou ◽  
Tianxin Zhao ◽  
Lina Zhang

Rapid urbanization in China greatly contributes to carbon emissions, while the industrial structure greatly contributes to changes in the variation of carbon emissions. This research addresses the impact of urbanization and industrial structure on carbon emissions from 2010 to 2018, by focusing on the Huaihe River Eco-economic Zone, which is an important economic corridor along the north–south division of China. Although many studies have focused on investigating the impact of urbanization or industrial structure on carbon emissions, few studies further addressed an analysis of the impact of both on carbon emissions, using multiple measurement models. This paper reveals the holistic and local impact of industrial structure and urbanization on carbon emissions, by integrating a threshold regression model with geographically weighted regression. The results are as follows: (1) From a holistic point of view, industrial structure and urbanization had both, single threshold, and double threshold effects on carbon emissions in the Huaihe River Eco-economic Zone. (2) From a regional perspective, the coefficients of industrial structure on carbon emissions were all positive, but the rate of increase gradually slowed down. The coefficients of urbanization on carbon emissions were all negative, reaching a maximum value of negative effect in 2013. Understanding the holistic and local impact of urbanization and industrial structure on carbon emissions provides governments with differentiated and forward-looking suggestions for mitigating carbon emissions in the Huaihe River Eco-economic Zone.


2021 ◽  
Vol 13 (19) ◽  
pp. 3942
Author(s):  
Shan Sang ◽  
Taixia Wu ◽  
Shudong Wang ◽  
Yingying Yang ◽  
Yiyao Liu ◽  
...  

Terrestrial ecosystems provide a variety of benefits for human life and production, and are a key link for achieving sustainable development goals (SDGs). The basin ecosystem is one type of terrestrial ecosystem. Ecological security (ES) assessments are an important component of the overall strategy to achieve regional sustainable development. The Huaihe River Basin (HRB) has the common characteristics of most basins, such as high population density, a rapidly developing economy, and many environmental problems. This study constructed an ES evaluation system by applying a pressure-state-response framework as an assessment method for the sustainable development of basins. Taking the HRB as an example, this study determined the ES status of the region from 2001 to 2019 and analyzed crucial factors for any variation observed by combining remote sensing and climate data, relevant policies, and spatial information technology. The results highlight the importance of reserves and the negative impact of urban expansion on ES. Additionally, the enactment of policies had a positive impact on ES, whereas precipitation had a negative effect on ES in most areas of the HRB. Based on these results, the government should strengthen the protection of forests, grasslands, and wetlands and improve water conservation facilities. This study provides guidance for the subsequent economic development, environmental protection, and the achievements of SDG 15 in the HRB.


2021 ◽  
Vol 37 ◽  
pp. 100909
Author(s):  
Hui Cheng ◽  
Wen Wang ◽  
Pieter Richard van Oel ◽  
Jingxuan Lu ◽  
Gang Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document