Ultra-high resolution airborne SAR imaging of vegetation and man-made objects based on 40% relative bandwidth in X-band

Author(s):  
Andreas R. Brenner
2020 ◽  
Vol 12 (11) ◽  
pp. 1710 ◽  
Author(s):  
Andreas Reigber ◽  
Eric Schreiber ◽  
Kurt Trappschuh ◽  
Sebastian Pasch ◽  
Gerhard Müller ◽  
...  

Synthetic Aperture Radar (SAR) is an established remote sensing technique that can robustly provide high-resolution imagery of the Earth’s surface. However, current space-borne SAR systems are limited, as a matter of principle, in achieving high azimuth resolution and a large swath width at the same time. Digital beamforming (DBF) has been identified as a key technology for resolving this limitation and provides various other advantages, such as an improved signal-to-noise ratio (SNR) or the adaptive suppression of radio interference (RFI). Airborne SAR sensors with digital beamforming capabilities are essential tools to research and validate this important technology for later implementation on a satellite. Currently, the Microwaves and Radar Institute of the German Aerospace Center (DLR) is developing a new advanced high-resolution airborne SAR system with digital beamforming capabilities, the so-called DBFSAR, which is planned to supplement its operational F-SAR system in near future. It is operating at X-band and features 12 simultaneous receive and 4 sequential transmit channels with 1.8 GHz bandwidth each, flexible DBF antenna setups and is equipped with a high-precision navigation and positioning unit. This paper aims to present the DBFSAR sensor development, including its radar front-end, its digital back-end, the foreseen DBF antenna configuration and the intended calibration strategy. To analyse the status, performance, and calibration quality of the DBFSAR system, this paper also includes some first in-flight results in interferometric and multi-channel marine configurations. They demonstrate the excellent performance of the DBFSAR system during its first flight campaigns.


Author(s):  
Remi Baque ◽  
Olivier Ruault du Plessis ◽  
Nicolas Castet ◽  
Patrick Fromage ◽  
Joseph Martinot-Lagarde ◽  
...  

Author(s):  
Yashi Zhou ◽  
Pei Wang ◽  
Zhen Chen ◽  
Qingchao Zhao ◽  
Wei Wang ◽  
...  
Keyword(s):  
X Band ◽  

2019 ◽  
Vol E102.B (7) ◽  
pp. 1345-1350 ◽  
Author(s):  
Yoshio YAMAGUCHI ◽  
Yuto MINETANI ◽  
Maito UMEMURA ◽  
Hiroyoshi YAMADA

Author(s):  
Yashi Zhou ◽  
Jing Li ◽  
Huachun Zhang ◽  
Zhen Chen ◽  
Lei Zhang ◽  
...  

Author(s):  
Jianlai Chen ◽  
Buge Liang ◽  
Junchao Zhang ◽  
De-Gui Yang ◽  
Yuhui Deng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document