A new method to derive river discharge from satellite altimetry (ENVISAT)

Author(s):  
M. J. Tourian ◽  
N. Sneeuw ◽  
J. Riegger ◽  
A. Bardossy
2020 ◽  
Author(s):  
Menaka Revel ◽  
Daiki Ikeshima ◽  
Dai Yamazaki ◽  
Shinjiro Kanae

2020 ◽  
Author(s):  
Rossella Belloni ◽  
Stefania Camici ◽  
Angelica Tarpanelli

<p>In view of recent dramatic floods and drought events, the detection of trends in the frequency and magnitude of long time series of flood data is of scientific interest and practical importance. It is essential in many fields, from climate change impact assessment to water resources management, from flood forecasting to drought monitoring, for the planning of future water resources and flood protection systems. <br>To detect long-term changes in river discharge a dense, in space and time, network of monitoring stations is required. However, ground hydro-meteorological monitoring networks are often missing or inadequate in many parts of the world and the global supply of the available river discharge data is often restricted, preventing to identify trends over large areas.  <br>The most direct method of deriving such information on a global scale involves satellite earth observation. Over the last two decades, the growing availability of satellite sensors, and the results so far obtained in the estimation of river discharge from the monitoring of the water level through satellite radar altimetry has fostered the interest on this subject.  <br>Therefore, in the attempt to overcome the lack of long continuous observed time series, in this study satellite altimetry water level data are used to set-up a consistent, continuous and up-to-date daily discharge dataset for different sites across the world. Satellite-derived water levels provided by publicly available datasets (Podaac, Dahiti, River& Lake, Hydroweb and Theia) are used along with available ground observed river discharges to estimate rating curves. Once validated, the rating curves are used to fill and extrapolate discharge data over the whole period of altimetry water level observations. The advantage of using water level observations provided by the various datasets allowed to obtain discharge time series with improved spatio-temporal coverages and resolutions, enabling to extend the study on a global scale and to efficiently perform the analysis even for small to medium-sized basins.  <br>Long continuous discharge time series so obtained are used to perform a global trend analysis on extreme flood and drought events. Specifically, annual maximum discharge and peak-over threshold values are extracted from the simulated daily discharge time series, as proxy variables of independent flood events. For flood and drought events, a trend analysis is carried out to identify changes in the frequency and magnitude of extreme events through the Mann-Kendall (M-K) test and a linear regression model between time and the flood magnitude.  <br>The analysis has permitted to identify areas of the world prone to floods and drought, so that appropriate actions for disaster risk mitigation and continuous improvement in disaster preparedness, response, and recovery practices can be adopted. </p>


Author(s):  
Kilian Vos ◽  
Mitchell D. Harley ◽  
Kristen D. Splinter ◽  
Andrew Walker ◽  
Ian L. Turner

The slope of the beach face is a critical parameter for coastal scientists and engineers studying sandy coastlines. However, despite its importance for coastal applications (engineering formulations, coastal flood modelling, swimming safety), it remains extremely difficult to obtain reliable estimates of the beachface slope over large spatial scales (hundreds to thousands of km of coastline). This presentation describes a new method to estimate the beach-face slope exclusively from space-borne observations: shoreline positions derived from publicly available optical imaging satellites and tide heights from satellite altimetry. This new technique is first validated against field measurements and then applied across hundreds of beaches in eastern Australia and California, USA (data available at http://coastsat.wrl.unsw.edu.au/).Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/U9zMbFX4gPk


2020 ◽  
Author(s):  
Daniel Scherer ◽  
Christian Schwatke ◽  
Denise Dettmering

<p>Despite increasing interest in monitoring the global water cycle, the availability of in-situ discharge time series is decreasing. However, this lack of ground data can be compensated by using remote sensing techniques to observe river discharge.</p><p>In this contribution, a new approach for estimating the discharge of large rivers by combining various long-term remote sensing data with physical flow equations is presented. For this purpose, water levels derived from multi-mission satellite altimetry and water surface extents extracted from optical satellite images are used, both provided by DGFI-TUM’s “Database of Hydrological Time series of Inland Waters” (DAHITI, https://dahiti.dgfi.tum.de). The datasets are combined by fitting a hypsometric curve in order to describe the stage-width relation, which is then used to derive the water level for each acquisition epoch of the long-term multi-spectral remote sensing missions. In this way, the chance of detecting water level extremes is increased and a bathymetry can be estimated from water surface extent observations. Below the minimum hypsometric water level, the river bed elevation is estimated using an empirical width-to-depth relationship in order to determine the final cross-sectional geometry. The required flow gradient is computed based on a linear adjustment of river surface slope using all altimetry-observed water level differences between synchronous measurements at various virtual stations along the river. The roughness coefficient is set based on geomorphological features quantified by adjustment factors. These are chosen using remote sensing data and a literature decision guide.</p><p>Within this study, all parameters are estimated purely based on remote sensing data, without using any ground data. In-situ data is only used for the validation of the method at the Lower Mississippi River. It shows that the presented approach yields best results for uniform and straight river sections. The resulting normalized root mean square error for those targets varies between 10% to 35% and is comparable with other studies.</p>


2004 ◽  
Vol 93 (1-2) ◽  
pp. 238-245 ◽  
Author(s):  
Alexei V. Kouraev ◽  
Elena A. Zakharova ◽  
Olivier Samain ◽  
Nelly M. Mognard ◽  
Anny Cazenave

Author(s):  
Menaka Revel ◽  
Daiki Ikeshima ◽  
Dai Yamazaki ◽  
Shinjiro Kanae

Sign in / Sign up

Export Citation Format

Share Document