Mean translation of GLCM texture features for across-date settlement type classification of QuickBird images

Author(s):  
F.P.S. Luus ◽  
F. van den Bergh ◽  
B.T.J. Maharaj
2014 ◽  
Vol 931-932 ◽  
pp. 1392-1396 ◽  
Author(s):  
Thitinan Kliangsuwan ◽  
Apichat Heednacram

The classification of ground-based cloud images has received more attention recently. The result of this work applies to the analysis of climate change; a correct classification is, therefore, important. In this paper, we used 18 texture features to distinguish 7 sky conditions. The important parameters of two classifiers are fine-tuned in the experiment, namely, k-nearest neighbor (k-NN) and artificial neural network (ANN). The performances of the two classifications were compared. Advantages and limitations of both classifiers were discussed. Our result revealed that the k-NN model performed at 72.99% accuracy while the ANN model has higher performance at 86.93% accuracy. We showed that our result is better than previous studies. Finally, seven most effective texture features are recommended to be used in the field of cloud type classification.


Author(s):  
Yashpal Jitarwal ◽  
Tabrej Ahamad Khan ◽  
Pawan Mangal

In earlier times fruits were sorted manually and it was very time consuming and laborious task. Human sorted the fruits of the basis of shape, size and color. Time taken by human to sort the fruits is very large therefore to reduce the time and to increase the accuracy, an automatic classification of fruits comes into existence.To improve this human inspection and reduce time required for fruit sorting an advance technique is developed that accepts information about fruits from their images, and is called as Image Processing Technique.


2021 ◽  
Vol 7 (3) ◽  
pp. 51
Author(s):  
Emanuela Paladini ◽  
Edoardo Vantaggiato ◽  
Fares Bougourzi ◽  
Cosimo Distante ◽  
Abdenour Hadid ◽  
...  

In recent years, automatic tissue phenotyping has attracted increasing interest in the Digital Pathology (DP) field. For Colorectal Cancer (CRC), tissue phenotyping can diagnose the cancer and differentiate between different cancer grades. The development of Whole Slide Images (WSIs) has provided the required data for creating automatic tissue phenotyping systems. In this paper, we study different hand-crafted feature-based and deep learning methods using two popular multi-classes CRC-tissue-type databases: Kather-CRC-2016 and CRC-TP. For the hand-crafted features, we use two texture descriptors (LPQ and BSIF) and their combination. In addition, two classifiers are used (SVM and NN) to classify the texture features into distinct CRC tissue types. For the deep learning methods, we evaluate four Convolutional Neural Network (CNN) architectures (ResNet-101, ResNeXt-50, Inception-v3, and DenseNet-161). Moreover, we propose two Ensemble CNN approaches: Mean-Ensemble-CNN and NN-Ensemble-CNN. The experimental results show that the proposed approaches outperformed the hand-crafted feature-based methods, CNN architectures and the state-of-the-art methods in both databases.


2013 ◽  
Vol 51 (6) ◽  
pp. 3328-3335 ◽  
Author(s):  
Scott Havens ◽  
Hans-Peter Marshall ◽  
Christine Pielmeier ◽  
Kelly Elder

Sign in / Sign up

Export Citation Format

Share Document