Anomaly detection in hyperspectral images through spectral unmixing and low rank decomposition

Author(s):  
Ying Qu ◽  
Rui Guo ◽  
Wei Wang ◽  
Hairong Qi ◽  
Bulent Ayhan ◽  
...  
2018 ◽  
Vol 56 (8) ◽  
pp. 4391-4405 ◽  
Author(s):  
Ying Qu ◽  
Wei Wang ◽  
Rui Guo ◽  
Bulent Ayhan ◽  
Chiman Kwan ◽  
...  

2019 ◽  
Vol 11 (24) ◽  
pp. 3028 ◽  
Author(s):  
Pei Xiang ◽  
Jiangluqi Song ◽  
Huan Li ◽  
Lin Gu ◽  
Huixin Zhou

Hyperspectral anomaly detection methods are often limited by the effects of redundant information and isolated noise. Here, a novel hyperspectral anomaly detection method based on harmonic analysis (HA) and low rank decomposition is proposed. This paper introduces three main innovations: first and foremost, in order to extract low-order harmonic images, a single-pixel-related HA was introduced to reduce dimension and remove redundant information in the original hyperspectral image (HSI). Additionally, adopting the guided filtering (GF) and differential operation, a novel background dictionary construction method was proposed to acquire the initial smoothed images suppressing some isolated noise, while simultaneously constructing a discriminative background dictionary. Last but not least, the original HSI was replaced by the initial smoothed images for a low-rank decomposition via the background dictionary. This operation took advantage of the low-rank attribute of background and the sparse attribute of anomaly. We could finally get the anomaly objectives through the sparse matrix calculated from the low-rank decomposition. The experiments compared the detection performance of the proposed method and seven state-of-the-art methods in a synthetic HSI and two real-world HSIs. Besides qualitative assessment, we also plotted the receiver operating characteristic (ROC) curve of each method and report the respective area under the curve (AUC) for quantitative comparison. Compared with the alternative methods, the experimental results illustrated the superior performance and satisfactory results of the proposed method in terms of visual characteristics, ROC curves and AUC values.


2020 ◽  
Vol 17 (10) ◽  
pp. 1772-1776 ◽  
Author(s):  
Shangzhen Song ◽  
Huixin Zhou ◽  
Lin Gu ◽  
Yixin Yang ◽  
Yiyi Yang

2019 ◽  
Vol 11 (12) ◽  
pp. 1485 ◽  
Author(s):  
Jinliang An ◽  
Jinhui Lei ◽  
Yuzhen Song ◽  
Xiangrong Zhang ◽  
Jinmei Guo

Dimensionality reduction is an essential and important issue in hyperspectral image processing. With the advantages of preserving the spatial neighborhood information and the global structure information, tensor analysis and low rank representation have been widely considered in this field and yielded satisfactory performance. In available tensor- and low rank-based methods, how to construct appropriate tensor samples and determine the optimal rank of hyperspectral images along each mode are still challenging issues. To address these drawbacks, an unsupervised tensor-based multiscale low rank decomposition (T-MLRD) method for hyperspectral images dimensionality reduction is proposed in this paper. By regarding the raw cube hyperspectral image as the only tensor sample, T-MLRD needs no labeled samples and avoids the processing of constructing tensor samples. In addition, a novel multiscale low rank estimating method is proposed to obtain the optimal rank along each mode of hyperspectral image which avoids the complicated rank computing. Finally, the multiscale low rank feature representation is fused to achieve dimensionality reduction. Experimental results on real hyperspectral datasets demonstrate the superiority of the proposed method over several state-of-the-art approaches.


2013 ◽  
Author(s):  
Shih-Yu Chen ◽  
Shiming Yang ◽  
Konstantinos Kalpakis ◽  
Chein-I Chang

2020 ◽  
Vol 12 (23) ◽  
pp. 3966
Author(s):  
Shangzhen Song ◽  
Yixin Yang ◽  
Huixin Zhou ◽  
Jonathan Cheung-Wai Chan

The accuracy of anomaly detection in hyperspectral images (HSIs) faces great challenges due to the high dimensionality, redundancy of data, and correlation of spectral bands. In this paper, to further improve the detection accuracy, we propose a novel anomaly detection method based on texture feature extraction and a graph dictionary-based low rank decomposition (LRD). First, instead of using traditional clustering methods for the dictionary, the proposed method employs the graph theory and designs a graph Laplacian matrix-based dictionary for LRD. The robust information of the background matrix in the LRD model is retained, and both the low rank matrix and the sparse matrix are well separated while preserving the correlation of background pixels. To further improve the detection performance, we explore and extract texture features from HSIs and integrate with the low-rank model to obtain the sparse components by decomposition. The detection results from feature maps are generated in order to suppress background components similar to anomalies in the sparse matrix and increase the strength of real anomalies. Experiments were run on one synthetic dataset and three real datasets to evaluate the performance. The results show that the performance of the proposed method yields competitive results in terms of average area under the curve (AUC) for receiver operating characteristic (ROC), i.e., 0.9845, 0.9962, 0.9699, and 0.9900 for different datasets, respectively. Compared with seven other state-of-the-art algorithms, our method yielded the highest average AUC for ROC in all datasets.


Author(s):  
X. Zhao ◽  
Z. Gao ◽  
W. Sun ◽  
F. Wen

Abstract. Band registration is one of the most critical steps in the production of multi/hyperspectral images and determines the accuracy of applications directly. Because of the characteristics of imaging devices in some multi/hyperspectral satellites, there may be a time difference between bands during push-broom imaging, which leads to displacements of moving clouds with respect to the ground. And a large number of feature points may gather around cloud contours due to the high contrast and rich texture, resulting in building a transformation more suitable for moving clouds and making ground objects ghosted and blurred. This brings a big challenge for registration methods based on feature extraction and matching. In this paper, we propose a novel coarse-to-fine band registration framework for multi/hyperspectral images containing moving clouds. In the coarse registration stage, a cloud mask is generated by grayscale stretching, morphology and other operations. Based on this mask, a coarse matching of cloud-free regions is performed to eliminate large misalignment between bands. In the refinement stage, low-rank analysis and RASL (Robust Alignment by Sparse and Low-rank decomposition) are used to optimize the rank of coarse results to achieve fine registration between bands. After experiments on a total of 102 images (83 cloudy images and 19 cloud-free images with all 32 bands) from Zhuhai-1 hyperspectral satellite, our method can achieve a registration accuracy of 0.6 pixels in cloudy images, 0.41 pixels in cloud-free images, which is enough for subsequent applications.


Sign in / Sign up

Export Citation Format

Share Document