A New Neural Approach of Supervised Change Detection in SAR Images Using Training Data Generation with Concurrent Self-Organizing Maps

Author(s):  
Victor-Emil Neagoe ◽  
Radu-Mihai Stoica
2021 ◽  
Vol 13 (7) ◽  
pp. 1236
Author(s):  
Yuanjun Shu ◽  
Wei Li ◽  
Menglong Yang ◽  
Peng Cheng ◽  
Songchen Han

Convolutional neural networks (CNNs) have been widely used in change detection of synthetic aperture radar (SAR) images and have been proven to have better precision than traditional methods. A two-stage patch-based deep learning method with a label updating strategy is proposed in this paper. The initial label and mask are generated at the pre-classification stage. Then a two-stage updating strategy is applied to gradually recover changed areas. At the first stage, diversity of training data is gradually restored. The output of the designed CNN network is further processed to generate a new label and a new mask for the following learning iteration. As the diversity of data is ensured after the first stage, pixels within uncertain areas can be easily classified at the second stage. Experiment results on several representative datasets show the effectiveness of our proposed method compared with several existing competitive methods.


Author(s):  
A. Schlichting ◽  
C. Brenner

LiDAR sensors are proven sensors for accurate vehicle localization. Instead of detecting and matching features in the LiDAR data, we want to use the entire information provided by the scanners. As dynamic objects, like cars, pedestrians or even construction sites could lead to wrong localization results, we use a change detection algorithm to detect these objects in the reference data. If an object occurs in a certain number of measurements at the same position, we mark it and every containing point as static. In the next step, we merge the data of the single measurement epochs to one reference dataset, whereby we only use static points. Further, we also use a classification algorithm to detect trees. <br><br> For the online localization of the vehicle, we use simulated data of a vertical aligned automotive LiDAR sensor. As we only want to use static objects in this case as well, we use a random forest classifier to detect dynamic scan points online. Since the automotive data is derived from the LiDAR Mobile Mapping System, we are able to use the labelled objects from the reference data generation step to create the training data and further to detect dynamic objects online. The localization then can be done by a point to image correlation method using only static objects. We achieved a localization standard deviation of about 5 cm (position) and 0.06° (heading), and were able to successfully localize the vehicle in about 93 % of the cases along a trajectory of 13 km in Hannover, Germany.


Author(s):  
Nazar Elfadil ◽  

Self-organizing maps are unsupervised neural network models that lend themselves to the cluster analysis of high-dimensional input data. Interpreting a trained map is difficult because features responsible for specific cluster assignment are not evident from resulting map representation. This paper presents an approach to automated knowledge acquisition using Kohonen's self-organizing maps and k-means clustering. To demonstrate the architecture and validation, a data set representing animal world has been used as the training data set. The verification of the produced knowledge base is done by using conventional expert system.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 35915-35925 ◽  
Author(s):  
Ruliang Xiao ◽  
Runxi Cui ◽  
Mingwei Lin ◽  
Lifei Chen ◽  
Youcong Ni ◽  
...  

Author(s):  
Victor-Emil Neagoe ◽  
Radu-Mihai Stoica ◽  
Alexandru-Ioan Ciurea ◽  
Lorenzo Bruzzone ◽  
Francesca Bovolo

Sign in / Sign up

Export Citation Format

Share Document