Mapping Surface Displacements and Aquifer Characteristics Around the Kumamoto Plain, Japan, Using Persistent Scatterer Interferometry

Author(s):  
Kazuya Ishitsuka ◽  
Takeshi Tsuji
2019 ◽  
Vol 11 (21) ◽  
pp. 2467
Author(s):  
Ogushi ◽  
Matsuoka ◽  
Defilippi ◽  
Pasquali

Persistent scatterer interferometry (PSI) is commonly applied to monitor surface displacements with millimetric precision. However, this technique still has trouble estimating non-linear displacements because the algorithm is designed for the slow and linear displacements. Additionally, there is a variety of non-linear displacement types, and finding an appropriate displacement model for PSI is still assumed to be a fairly large task. In this paper, the conventional PSI technique is extended using a non-parametric non-linear approach (NN-PSI), and the performance of the extended method is investigated by simulations and actual observation data processing with TerraSAR-X. In the simulation, non-linear displacements are modeled by the magnitudes and periods of the displacement, and the evaluation of NN-PSI is conducted. According to the simulation results, the maximum magnitude of the displacement that can be estimated by NN-PSI is two and a half times the magnitude of the SAR sensor’s wavelength (2.5λ that is roughly equivalent to 8 cm for X-band, 14 cm for C-band, and 60 cm for L-band), and the period of the displacement is about three months. However, this displacement cannot be reconstructed by the conventional PSI due to the limitation, known as the 2π displacement ambiguity. The result of the observation data processing shows that a large displacement with the 2π ambiguity can be estimated by NN-PSI as the simulation results show, but the conventional PSI cannot reconstruct it. In addition, a different approach, Small BAseline Subset (SBAS), is applied to the same data to ensure the accuracy of results, and the correlation between NN-PSI and SBAS is 0.95, while that between the conventional PSI and SBAS is –0.66. It is concluded that NN-PSI enables the reconstruction of non-linear displacements by the non-parametric approach and the expansion of applications to measure surface displacements that could not be measured due to the limitations of the traditional PSI methods.


2021 ◽  
Vol 25 (1) ◽  
pp. 93-99
Author(s):  
Marcos Eduardo Hartwig ◽  
Leandro Ribes De Lima ◽  
Daniele Perissin

In the last decade, the Persistent Scatterer Interferometry – PSI have been largely employed to predict instabilities and failure in open pit mines. The PSI is a powerful technique, which combines radar satellite data in order to detect and monitor tiny surface displacements over vast areas. In the last years, the Sentinel-1 radar mission have produced images of the globe acquired with different spatial and temporal resolutions that are now freely available. In recent years, the footwall slopes of the Riacho dos Machados Gold Mine – MRDM (Minas Gerais state, southeastern Brazil) have recorded large planar failures controlled by foliation planes. Therefore, the focus of this paper is to evaluate a stack of 39 Interferometric Wide Sentinel-1 scenes, spanning from January 2018 to April 2019, acquired in descending orbit geometry, for the detection and monitoring of surface displacements in the MRDM. The results have shown that descending IW Sentinel-1 scenes can be used to provide a broad picture of the Line-Of-Sight - LOS deformation phenomena. In order to monitor the evolution of the deformation phenomena induced by mining activities, LOS deformation maps with millimeter accuracy could be only delivered at least each 12 days.


2019 ◽  
Vol 11 (14) ◽  
pp. 1675 ◽  
Author(s):  
Tomás ◽  
Pagán ◽  
Navarro ◽  
Cano ◽  
Pastor ◽  
...  

This work describes a new procedure aimed to semi-automatically identify clusters of active persistent scatterers and preliminarily associate them with different potential types of deformational processes over wide areas. This procedure consists of three main modules: (i) ADAfinder, aimed at the detection of Active Deformation Areas (ADA) using Persistent Scatterer Interferometry (PSI) data; (ii) LOS2HV, focused on the decomposition of Line Of Sight (LOS) displacements from ascending and descending PSI datasets into vertical and east-west components; iii) ADAclassifier, that semi-automatically categorizes each ADA into potential deformational processes using the outputs derived from (i) and (ii), as well as ancillary external information. The proposed procedure enables infrastructures management authorities to identify, classify, monitor and categorize the most critical deformations measured by PSI techniques in order to provide the capacity for implementing prevention and mitigation actions over wide areas against geological threats. Zeri, Campiglia Marittima–Suvereto and Abbadia San Salvatore (Tuscany, central Italy) are used as case studies for illustrating the developed methodology. Three PSI datasets derived from the Sentinel-1 constellation have been used, jointly with the geological map of Italy (scale 1:50,000), the updated Italian landslide and land subsidence maps (scale 1:25,000), a 25 m grid Digital Elevation Model, and a cadastral vector map (scale 1:5,000). The application to these cases of the proposed workflow demonstrates its capability to quickly process wide areas in very short times and a high compatibility with Geographical Information System (GIS) environments for data visualization and representation. The derived products are of key interest for infrastructures and land management as well as decision-making at a regional scale.


2020 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Enton Bedini

Persistent Scatterer Interferometry (PSI) analysis of Sentinel-1 time series was carried out to detect ground subsidence in the city of Recife, Brazil. The dataset consisted of sixty-eight Sentinel-1A Interferometric Wide (IW) Single Look Complex (SLC) images of the time period April 2017 – September 2019. The images were acquired in descending orbit in VV (vertical transmitting, vertical receiving) polarization. The results of the PSI analysis show that in the city of Recife occur several ground subsidence areas. The largest ground subsidence area occurs between the neighborhoods of Afogados, Torrŏes and Cordeiro. The subsidence rates in this area range from few mm/year up to -15 mm/year. This ground subsidence could be a result of groundwater extraction or of subsidence processes in urbanized reclaimed lands. Similar but smaller ground subsidence areas occur in several localities in Recife. In some cases, subsidence with rates of up to -25 mm/year is noted in small zones where new buildings have been constructed in the last decade. This should be due to ground settlement processes, taking a long time due to the particular soils and geology of the locality. This study can serve as a first contribution for further research on the ground subsidence hazard in the city of Recife and the surrounding areas by means of satellite radar imagery.


Author(s):  
R. Bonì ◽  
C. Meisina ◽  
C. Perotti ◽  
F. Fenaroli

Abstract. A methodology based on Persistent Scatterer Interferometry (PSI) is proposed in order to disentangle the contribution of different processes that act at different spatio-temporal scales in land subsidence (i.e. vadose zone processes as swelling/shrinkage of clay soils, soil consolidation and fluid extraction). The methodology was applied in different Italian geological contexts characterized by natural and anthropic processes (i.e. a Prealpine valley and the Po Plain in northern Italy).


Sign in / Sign up

Export Citation Format

Share Document