aquifer characteristics
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 26)

H-INDEX

9
(FIVE YEARS 1)

Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 9
Author(s):  
Rim Tijani ◽  
Abdennebi El Mandour ◽  
Driss Chafouq ◽  
Malak Elmeknassi ◽  
Fatima Ezzahra El Ghazali ◽  
...  

The geological and hydrogeological approach of the structure of the basin OuladBouSbaâ led to the definition of the geometry of the main aquifers. In general, the profiles show the complexity of the geological configuration. The filling of the depression of OuladBouSbaâ is from the Eo-Cretacian. At this level, the aquifer is recharged by direct water infiltration. The quaternary, Eocene, and Cenomanian-Turonian formations constitute the main aquifers. Horizontal as well as vertical heterogeneity lead to a higher diversification of aquifer characteristics. To define the origins and understand the groundwater flows in this complex zone, we used a multi-tracer approach with the analysis of major elements and the isotopes of δ2H and δ18O. The chemical composition is mainly governed by the interaction with the rock with low electrical conductivity except in areas around domestic landfills. Geochemical results analyzing groundwater in the Piper diagram show two distinct chemical facies: the sulfated calcium and magnesium, and the hyper-chloride calcium. The levels of δ18O range from −7.60 to −4.25 while those of δ2H vary between −53.07 and −27.03. Analyses of signature isotopes differentiate two groups. The first contains high levels of heavy isotopes (highest levels of δ2H and δ18O) having therefore been submitted to evaporation. The second with lower levels of δ2H and δ18O did not undergo evaporation. The first one belongs to the unconfined free aquifer while the second corresponds to the captive aquifer.


2021 ◽  
Vol 80 (21) ◽  
Author(s):  
Stefano Lo Russo ◽  
Enrico Suozzi ◽  
Martina Gizzi ◽  
Glenda Taddia

AbstractIt has become increasingly necessary to optimise mountain groundwater resource management and comprehend resource-recharging systems from a hydrogeological perspective to formulate adequate resource protection strategies. Analysing mountain spring behaviour and aquifer characteristics can be time-consuming, so new automated techniques and software tools are needed to estimate hydrogeological parameters and understand the exhaustion dynamics of groundwater resources. This paper introduces SOURCE, a new semi-automatic tool that automates the hydrogeological characterisation of water springs and provides proper estimations of the vulnerability index, as well as autocorrelation and cross-correlation statistical coefficients. SOURCE rapidly processed input data from the Mascognaz 1 spring (Aosta Valley) water probes and meteorological station to provide graphical outputs and values for the main hydrodynamic parameters. Having a single software package that contains all the main methods of water spring analysis could potentially reduce analysis times from a few days to a few hours.


2021 ◽  
Vol 80 (17) ◽  
Author(s):  
Jafar Alkhatib ◽  
Irina Engelhardt ◽  
Martin Sauter

AbstractOverpumping or overexploitation of groundwater is one of the major threats for aquifer systems in arid and semi-arid areas. Managed aquifer recharge (MAR) has been suggested by many researchers as a sustainable and effective method to alleviate negative impacts of overpumping. Optimizing artificial recharge considers the selection of suitable MAR sites in terms of surface and subsurface characteristics. While surface characteristics at potential MAR sites could be modified (e.g. slope, soil texture, etc.), subsurface characteristics cannot be changed through engineering work. Characteristics of the aquifer, such as depth to groundwater, play an important role in determining the capability of an aquifer to store a specific volume of infiltrated water. Currently, only a limited number of quoted researches are available that consider factors related to aquifer characteristics and the range of these factors to identify optimal MAR sites. In this study, a new approach is presented, that employs numerical groundwater modeling to generate MAR suitability maps considering sub-surface characteristics, such as depth-to-groundwater, aquifer transmissivity and specific yield. Multiple model-runs are conducted to simulate groundwater table response with respect to the volume of infiltrated water. Simulation results are used to calibrate a groundwater mound empirical equation that calculates the groundwater level increase as a function of the transmissivity and infiltrated water volume for a given value of aquifer’ specific yield, range of vertical hydraulic conductivities and a specific design and operation conditions of the MAR system. The empirical equation is employed in GIS to spatially calculate the height of groundwater mound beneath a hypothetical MAR site and to generate, based on that, suitability maps for MAR implementation. Assuming that MAR structures capture the median of monthly surface runoff rates at the respective wadi (catchment area), suitability maps are generated for different configurations/scenarios of aquifer hydraulic conductivity in a parameter study. The results highlight the importance of integrating aquifer characteristics (geometry and hydraulic parameters) and expected magnitudes and fluxes of infiltration water in delineating suitable sites for MAR.


2021 ◽  
Vol 19 (1) ◽  
pp. 93-104
Author(s):  
Anthony A. Ugbaja ◽  
God'swill A. William ◽  
Uduak A. Ugbaja

Vertical Electrical Sounding (VES) and pumping test (constant discharge and recovery test) was carried out in parts of Boki Local Government Area to evaluate the groundwater potential, using aquifer characteristics of the study area. Sixteen (16) VES point was employed for this study using the Schlumberger array, with a maximum spread of 400- 600m. The stimulated result from the field data shows 3-5 layers resistivity model with the following curve types A, AK, KH, KHA, QH, QHA and QHK. The geoelectric properties include resistivity of the various layers ranging from 33.58 - 2.29 x 105Ώm, thickness from 0.2 - 50.2m, depth to basement varies from 2.99 - 74.60m across the study area. The litho logs show a top layer comprising of laterite, gravel/gravelly sand and intercalations of siltstones, the layers underneath are made-up of clay, weathered basement containing migmatites and gneisses, fractured and unfractured basement are made up of granitic and metamorphic rocks. The weathered and fractured layers constitute the aquiferous layers in the study area. Hydraulic parameters show transmissivity (T) range of 4.1x 10-5 - 1.92 x 10-1 m 2/day, specific capacity (SC) ranges from 2.09-21.42m2 /day, hydraulic conductivity (K) varies from 2.6 x 10-5 - 3.0 x10-3m/day and mean static water level (SWL) of 7.39m. Iso resistivity map of saprolite, fractured basement map, isopach map and the transmissivity map show that the studied area falls within the low-moderate groundwater potential zone.


Author(s):  
Hans-Olaf Pfannkuch ◽  
Howard D. Mooers ◽  
Donald I. Siegel ◽  
John J. Quinn ◽  
Donald O. Rosenberry ◽  
...  

2021 ◽  
Author(s):  
Anthony Nuonum Ugbaja

Abstract Vertical Electrical Sounding (VES) and pumping test (constant discharge and recovery test) was carried out in parts of Boki Local Government Area to evaluate the groundwater potential, using aquifer characteristics of the study area. Sixteen (16) VES point was employed for this study using the Schlumberger array, with a maximum spread of 400-600m. The stimulated result from the field data shows 3-5 layers resistivity model with the following curve types A, AK, KH, KHA, QH, QHA and QHK. The geoelectric properties include resistivity of the various layers ranging from 33.58 - 2.29 x 105Ώm, thickness from 0.2 - 50.2m, depth to basement varies from 2.99 - 74.60m across the study area. The litho logs show a top layer comprising of laterite, gravel/gravelly sand and siltstone intercalations and the layers underneath are made-up of clay, weathered basement containing migmatites and gneisses, fractured and unfractured basement are made up of granitic and metamorphic rocks. The weathered and fractured layers constitute the aquiferous layers in the study area. Hydraulic parameters were estimated from 16 pumped wells and results show transmissivity (T) range of 4.1x 10-5 - 1.92 x 10-1 m 2 /day, specific capacity (SC) ranges from 2.09-21.42m2 /day, hydraulic conductivity (K) varies from 2.6 x 10-5 - 3.0 x 10-3m/day and mean static water level (SWL) of 7.39m . Iso resistivity map of saprolite, fractured basement map, isopach map and the transmissivity map show that the studied area falls within the low-moderate groundwater potential zone.


2021 ◽  
Author(s):  
Stefano Lo Russo ◽  
Enrico Suozzi ◽  
Martina Gizzi ◽  
Glenda Taddia

Abstract It has become increasingly necessary to optimise mountain groundwater resource management and comprehend resource recharging systems from a hydrogeological perspective in order to formulate adequate resource protection strategies. Analysing mountain spring behaviour and aquifer characteristics can be time consuming, so new automated techniques and software tools are needed to estimate hydrogeological parameters and understand exhaustion dynamics of groundwater resources. This paper introduces SOURCE, a new semi-automatic tool that automates the hydrogeological characterisation of water springs and provides proper estimations of the vulnerability index, as well as autocorrelation and cross-correlation statistical coefficients. SOURCE rapidly processed input data from the Mascognaz 1 spring (Aosta Valley) water probes and meteorological station to provide graphical outputs and values for the main hydrodynamic parameters. Having a single software package that contains all the main methods of water spring analysis could potentially reduce analysis times from a few days to a few hours.


Author(s):  
Isaac O. Olaniyan

This study established relationship among three transmissivity equations using dimensional analysis, comparing three dependent variables inherent in the transmissivity equations, and use correlation analysis to examine the nature of interrelationship between drawdown and specific capacity in the Birnin-Gwari local government area of Kaduna State, Nigeria between October 2018 and October 2019. Relationship between three transmissivity equations, namely, Jacob, Logan and Babuskin was determined using dimensional analysis. The equations and the outcome were applied to the hydraulic data obtained from 26 producing boreholes in the study area. Comparison of the dependent variables, namely discharge, drawdown and hydraulic conductivity, was carried out to observe the relationship among them. The Correlation analysis was used to examine the nature of interrelationship between drawdown and specific capacity, while the plots of depth-to-water table and depth-to-basement were made to provide pictorial comparison between positions of water table and the underlying Basement. The results showed that the values computed from the Jacob method are the lowest among the three, while Logan method gave higher values, although they all trend in similar manner. The study revealed an inverse trend in the drawdown versus discharge and hydraulic conductivity. Correlation analysis between drawdown and specific capacity gave a regression coefficient of -0.593 and correlation coefficient of 0.352, indicating a weak relationship between them. The graphical relation of water level versus basement rock surfaces portend a near-parallel trend possibly determined by the underlying geology. Transmissivity values computed from the Babuskin method gave almost average values among the three methods. Both the regression and correlation coefficients gave low to average values between drawdown and specific capacity. The depth-to-basement versus depth-to-water plots showed that water table variations are probably controlled by the type and trend of basement topography.


Sign in / Sign up

Export Citation Format

Share Document