Real-time monitoring method of pipeline deformation based on Internet of things

Author(s):  
Mengyuan Ren ◽  
Xiaolong Chen ◽  
Haoyu Yu
2017 ◽  
Vol 13 (7) ◽  
pp. 155014771772181 ◽  
Author(s):  
Seok-Woo Jang ◽  
Gye-Young Kim

This article proposes an intelligent monitoring system for semiconductor manufacturing equipment, which determines spec-in or spec-out for a wafer in process, using Internet of Things–based big data analysis. The proposed system consists of three phases: initialization, learning, and prediction in real time. The initialization sets the weights and the effective steps for all parameters of equipment to be monitored. The learning performs a clustering to assign similar patterns to the same class. The patterns consist of a multiple time-series produced by semiconductor manufacturing equipment and an after clean inspection measured by the corresponding tester. We modify the Line, Buzo, and Gray algorithm for classifying the time-series patterns. The modified Line, Buzo, and Gray algorithm outputs a reference model for every cluster. The prediction compares a time-series entered in real time with the reference model using statistical dynamic time warping to find the best matched pattern and then calculates a predicted after clean inspection by combining the measured after clean inspection, the dissimilarity, and the weights. Finally, it determines spec-in or spec-out for the wafer. We will present experimental results that show how the proposed system is applied on the data acquired from semiconductor etching equipment.


Author(s):  
Zhaijun Lu ◽  
Weijia Huang ◽  
Mu Zhong ◽  
Dongrun Liu ◽  
Tian Li ◽  
...  

Real-time monitoring of overturning coefficients is very important for ensuring the safety of high-speed trains passing through complex terrain sections under strong wind conditions. In recent years, the phenomenon of “car swaying” that occurs when trains pass through the complex terrain has brought new challenges to ensuring the safety and riding comfort of passengers. In China, more and more high-speed trains are facing strong wind environments when running in complex terrain sections. However, due to the limitation of objective conditions, so far, only a few economical and effective methods of measurement have been developed that are suitable for real-time monitoring of the overturning coefficient of commercial vehicles. Therefore, considering the applicability and universality of such a monitoring method, this study presents a method for measuring the overturning coefficient of trains using the primary suspension system under strong winds. A vehicle test was carried out to verify the accuracy of the method. The results show that after correction, the overturning coefficient obtained from the primary suspension system is generally consistent with the overturning coefficient obtained from the instrumented wheelset. The method of measuring the overturning coefficient of trains in strong wind environments with the primary suspension system is, thus, proven feasible.


2020 ◽  
Vol 116 ◽  
pp. 103228 ◽  
Author(s):  
Fengchen Chen ◽  
Huanjing Jiao ◽  
Liming Han ◽  
Liwei Shen ◽  
Wenjia Du ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document