A stability based neural network control method for a class of nonlinear systems

Author(s):  
E. Tzirkel-Hancock ◽  
F. Fallside
2022 ◽  
Vol 12 (2) ◽  
pp. 754
Author(s):  
Ziteng Sun ◽  
Chao Chen ◽  
Guibing Zhu

This paper proposes a zero-speed vessel fin stabilizer adaptive neural network control strategy based on a command filter for the problem of large-angle rolling motion caused by adverse sea conditions when a vessel is at low speed down to zero. In order to avoid the adverse effects of the high-frequency part of the marine environment on the vessel rolling control system, a command filter is introduced in the design of the controller and a command filter backstepping control method is designed. An auxiliary dynamic system (ADS) is constructed to correct the feedback error caused by input saturation. Considering that the system has unknown internal parameters and unmodeled dynamics, and is affected by unknown disturbances from the outside, the neural network technology and nonlinear disturbance observer are fused in the proposed design, which not only combines the advantages of the two but also overcomes the limitations of the single technique itself. Through Lyapunov theoretical analysis, the stability of the control system is proved. Finally, the simulation results also verify the effectiveness of the control method.


Sign in / Sign up

Export Citation Format

Share Document