Wasserstein Distance-Based Domain Adaptation and Its Application to Road Segmentation

Author(s):  
Seita Kono ◽  
Takaya Ueda ◽  
Enrique Arriaga-Varela ◽  
Ikuko Nishikawa
Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1994
Author(s):  
Ping Li ◽  
Zhiwei Ni ◽  
Xuhui Zhu ◽  
Juan Song ◽  
Wenying Wu

Domain adaptation manages to learn a robust classifier for target domain, using the source domain, but they often follow different distributions. To bridge distribution shift between the two domains, most of previous works aim to align their feature distributions through feature transformation, of which optimal transport for domain adaptation has attract researchers’ interest, as it can exploit the local information of the two domains in the process of mapping the source instances to the target ones by minimizing Wasserstein distance between their feature distributions. However, it may weaken the feature discriminability of source domain, thus degrade domain adaptation performance. To address this problem, this paper proposes a two-stage feature-based adaptation approach, referred to as optimal transport with dimensionality reduction (OTDR). In the first stage, we apply the dimensionality reduction with intradomain variant maximization but source intraclass compactness minimization, to separate data samples as much as possible and enhance the feature discriminability of the source domain. In the second stage, we leverage optimal transport-based technique to preserve the local information of the two domains. Notably, the desirable properties in the first stage can mitigate the degradation of feature discriminability of the source domain in the second stage. Extensive experiments on several cross-domain image datasets validate that OTDR is superior to its competitors in classification accuracy.


2020 ◽  
Vol 34 (07) ◽  
pp. 12975-12983
Author(s):  
Sicheng Zhao ◽  
Guangzhi Wang ◽  
Shanghang Zhang ◽  
Yang Gu ◽  
Yaxian Li ◽  
...  

Deep neural networks suffer from performance decay when there is domain shift between the labeled source domain and unlabeled target domain, which motivates the research on domain adaptation (DA). Conventional DA methods usually assume that the labeled data is sampled from a single source distribution. However, in practice, labeled data may be collected from multiple sources, while naive application of the single-source DA algorithms may lead to suboptimal solutions. In this paper, we propose a novel multi-source distilling domain adaptation (MDDA) network, which not only considers the different distances among multiple sources and the target, but also investigates the different similarities of the source samples to the target ones. Specifically, the proposed MDDA includes four stages: (1) pre-train the source classifiers separately using the training data from each source; (2) adversarially map the target into the feature space of each source respectively by minimizing the empirical Wasserstein distance between source and target; (3) select the source training samples that are closer to the target to fine-tune the source classifiers; and (4) classify each encoded target feature by corresponding source classifier, and aggregate different predictions using respective domain weight, which corresponds to the discrepancy between each source and target. Extensive experiments are conducted on public DA benchmarks, and the results demonstrate that the proposed MDDA significantly outperforms the state-of-the-art approaches. Our source code is released at: https://github.com/daoyuan98/MDDA.


2021 ◽  
Vol 11 (17) ◽  
pp. 7983
Author(s):  
Kun Xu ◽  
Shunming Li ◽  
Ranran Li ◽  
Jiantao Lu ◽  
Xianglian Li ◽  
...  

Due to the mechanical equipment working under variable speed and load for a long time, the distribution of samples is different (domain shift). The general intelligent fault diagnosis method has a good diagnostic effect only on samples with the same sample distribution, but cannot correctly predict the faults of samples with domain shift in a real situation. To settle this problem, a new intelligent fault diagnosis method, domain adaptation network with double adversarial mechanism (DAN-DAM), is proposed. The DAN-DAM model is mainly composed of a feature extractor, two label classifiers and a domain discriminator. The feature extractor and the two label classifiers form the first adversarial mechanism to achieve class-level alignment. Moreover, the discrepancy between the two classifiers is measured by Wasserstein distance. Meanwhile, the feature extractor and the domain discriminator form the second adversarial mechanism to realize domain-level alignment. In addition, maximum mean discrepancy (MMD) is used to reduce the distance between the extracted features of two domains. The DAN-DAM model is verified by multiple transfer experiments on some datasets. According to the transfer experiment results, the DAN-DAM model has a good diagnosis effect for the domain shift samples. Moreover, the diagnostic accuracy is generally higher than other mainstream diagnostic methods.


Author(s):  
Nam LeTien ◽  
Amaury Habrard ◽  
Marc Sebban

Optimal transport has received much attention during the past few years to deal with domain adaptation tasks. The goal is to transfer knowledge from a source domain to a target domain by finding a transportation of minimal cost moving the source distribution to the target one. In this paper, we address the challenging task of privacy preserving domain adaptation by optimal transport. Using the Johnson-Lindenstrauss transform together with some noise, we present the first differentially private optimal transport model and show how it can be directly applied on both unsupervised and semi-supervised domain adaptation scenarios. Our theoretically grounded method allows the optimization of the transportation plan and the Wasserstein distance between the two distributions while protecting the data of both domains.We perform an extensive series of experiments on various benchmarks (VisDA, Office-Home and Office-Caltech datasets) that demonstrates the efficiency of our method compared to non-private strategies.


Sign in / Sign up

Export Citation Format

Share Document