Improved Harmonic Suppression of Class-C Power Amplifiers Using Modified Bias Lines

Author(s):  
Anirban Sengupta ◽  
Mrinal Kanti Mandal ◽  
Rijubrata Pal
2008 ◽  
Vol 1069 ◽  
Author(s):  
Sher Azam ◽  
R. Jonsson ◽  
E. Janzen ◽  
Q. Wahab

ABSTRACTThe performance of SiC microwave power transistors is studied in fabricated class-AB power amplifiers and class-C switching power amplifier using physical structure of an enhanced version of previously fabricated and tested SiC MESFET. The results for pulse input in class-C at 1 GHz are; efficiency of 71.4 %, power density of 1.0 W/mm. The switching loss was 0.424 W/mm. The results for two class-AB power amplifiers are; the 30-100 MHz amplifier showed 45.6 dBm (∼ 36 W) output powers at P1dB, at 50 MHz. The power added efficiency (PAE) is 48 % together with 21 dB of power gain. The maximum output power at P1dB at 60 V drain bias and Vg= -8.5 V was 46.7 dBm (∼47 W). The typical results obtained in 200-500 MHz amplifier are; at 60 V drain bias the P1dB is 43.85 dBm (24 W) except at 300 MHz where only 41.8 dBm was obtained. The maximum out put power was 44.15 dBm (26 W) at 500 MHz corresponding to a power density of 5.2 W/mm. The PAE @ P1dB [%] at 500 MHz is 66 %.


Micromachines ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 697 ◽  
Author(s):  
Hojong Choi

Point-of-care ultrasound systems are widely used in ambulances and emergency rooms. However, the excessive heat generated from ultrasound transmitters has an impact on the implementation of piezoelectric transducer elements and on battery consumption, thereby affecting the system’s sensitivity and resolution. Non-linear power amplifiers, such as class-C amplifiers, could substitute linear power amplifiers, such as class-A amplifiers, which are currently used in point-of-care ultrasound systems. However, class-C power amplifiers generate less output power, resulting in a reduction of system sensitivity. To overcome this issue, we propose a new diode expander architecture dedicated to power amplifiers to reduce the effects of sinusoidal pulses toward the power supply. Thus, the proposed architecture could increase the input pulse amplitudes applied to the main transistors in the power amplifiers, hence increasing the output voltage of such amplifiers. To verify the proposed concept, pulse-echo responses from an ultrasonic transducer were tested with the developed class-C power amplifier using a resistor divider and the designed diode expander architecture. The peak-to-peak amplitude of the echo signals of the ultrasonic transducers when using a class-C power amplifier with a diode expander architecture (2.98 Vp–p) was higher than that for the class-C power amplifier with a resistor divider architecture (2.51 Vp–p). Therefore, the proposed class-C power amplifier with diode expander architecture is a potential candidate for improving the sensitivity performance of piezoelectric transducers for point-of-care ultrasound systems.


Sign in / Sign up

Export Citation Format

Share Document