A Novel Genetic Algorithm-XGBoost Based Intrusion Detection Method

Author(s):  
Yingying Sun ◽  
Chunhe Song ◽  
Shimao Yu ◽  
Hao Pan ◽  
Tong Li ◽  
...  
2021 ◽  
Vol 1966 (1) ◽  
pp. 012051
Author(s):  
Shuai Zou ◽  
Fangwei Zhong ◽  
Bing Han ◽  
Hao Sun ◽  
Tao Qian ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1375
Author(s):  
Celestine Iwendi ◽  
Joseph Henry Anajemba ◽  
Cresantus Biamba ◽  
Desire Ngabo

Web security plays a very crucial role in the Security of Things (SoT) paradigm for smart healthcare and will continue to be impactful in medical infrastructures in the near future. This paper addressed a key component of security-intrusion detection systems due to the number of web security attacks, which have increased dramatically in recent years in healthcare, as well as the privacy issues. Various intrusion-detection systems have been proposed in different works to detect cyber threats in smart healthcare and to identify network-based attacks and privacy violations. This study was carried out as a result of the limitations of the intrusion detection systems in responding to attacks and challenges and in implementing privacy control and attacks in the smart healthcare industry. The research proposed a machine learning support system that combined a Random Forest (RF) and a genetic algorithm: a feature optimization method that built new intrusion detection systems with a high detection rate and a more accurate false alarm rate. To optimize the functionality of our approach, a weighted genetic algorithm and RF were combined to generate the best subset of functionality that achieved a high detection rate and a low false alarm rate. This study used the NSL-KDD dataset to simultaneously classify RF, Naive Bayes (NB) and logistic regression classifiers for machine learning. The results confirmed the importance of optimizing functionality, which gave better results in terms of the false alarm rate, precision, detection rate, recall and F1 metrics. The combination of our genetic algorithm and RF models achieved a detection rate of 98.81% and a false alarm rate of 0.8%. This research raised awareness of privacy and authentication in the smart healthcare domain, wireless communications and privacy control and developed the necessary intelligent and efficient web system. Furthermore, the proposed algorithm was applied to examine the F1-score and precisionperformance as compared to the NSL-KDD and CSE-CIC-IDS2018 datasets using different scaling factors. The results showed that the proposed GA was greatly optimized, for which the average precision was optimized by 5.65% and the average F1-score by 8.2%.


2014 ◽  
Vol 490-491 ◽  
pp. 1588-1591
Author(s):  
Liang Zhang ◽  
Hao Yue Sun ◽  
Guo Lv ◽  
Xiao Lu Sun

In this paper, the intelligentized way is applied to detecting anomaly intrusion. Based on the global property of genetic algorithm and the locality of neural network, this method effectively improves the convergence speed of the network and the detection accuracy rate. It not only avoids the defect of the neural network, but also improves the precision.


Sign in / Sign up

Export Citation Format

Share Document