Millimeter-wave patch array antennas topologies on HTCC and HITCE substrates

Author(s):  
Francesco Giuppi ◽  
Andrea Milano ◽  
Andrea Pallotta ◽  
Paolo Arcioni
2015 ◽  
Vol 2015 ◽  
pp. 1-22 ◽  
Author(s):  
Ivan Aldaya ◽  
Gabriel Campuzano ◽  
Gerardo Castañón ◽  
Alejandro Aragón-Zavala

Given the interference avoidance capacity, high gain, and dynamical reconfigurability, phased array antennas (PAAs) have emerged as a key enabling technology for future broadband mobile applications. This is especially important at millimeter-wave (mm-wave) frequencies, where the high power consumption and significant path loss impose serious range constraints. However, at mm-wave frequencies the phase and amplitude control of the feeding currents of the PAA elements is not a trivial issue because electrical beamforming requires bulky devices and exhibits relatively narrow bandwidth. In order to overcome these limitations, different optical beamforming architectures have been presented. In this paper we review the basic principles of phased arrays and identify the main challenges, that is, integration of high-speed photodetectors with antenna elements and the efficient optical control of both amplitude and phase of the feeding current. After presenting the most important solutions found in the literature, we analyze the impact of the different noise sources on the PAA performance, giving some guidelines for the design of optically fed PAAs.


Author(s):  
Enzo Carpentieri ◽  
Ugo F. D'Elia ◽  
Emilio De Stefano ◽  
Lucia Di Guida ◽  
Roberto Vitiello

Author(s):  
A. Daryoush ◽  
P. Herczfeld ◽  
V. Contarino ◽  
A. Rosen ◽  
Z. Turski ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Shaddrack Yaw Nusenu

With the massive growth of wireless data in mobile broadband communications, millimeter-wave (mm-wave) communication is an alternative enabling technique for fifth generation (5G) wireless communication systems. More importantly, mm-wave offers large frequency spectrum bands ranging from 30GHz to 300GHz that can be utilized to provide very high capacity (i.e., multigigabits per-second data rates). Moreover, because of the small wavelength at mm-wave frequencies, we can exploit large antenna elements in a small physical area, meaning beamforming schemes are feasible. Nevertheless, high directional antennas should be used due to overcoming the severe path loss and absorption in mm-wave frequencies. Further, the antennas should be steerable in angle and range directions to support point-to-point (multipoint) communications. So far, mm-wave communication has utilized phased-array antennas arrangement which is solely angle dependent. This review paper presents recent array technology, namely, frequency modulated frequency diverse array (FDA) for mm-wave communication applications with an emphasis on beamforming. In FDA, small frequency increment is added across the elements. In doing so, an array beam is generated which is angle-range-time dependent without the need of phase shifters. This feature has several promising potentials in mm-wave communications. In this review, the object is to bring to the fore this advance FDA technology to mm-wave communications community to call for more investigations. We review FDA research progress up to date and highlight the potential applications in mm-wave communications.


Sign in / Sign up

Export Citation Format

Share Document