Single channel blind source separation based on variational mode decomposition and PCA

Author(s):  
Priyanka Dey ◽  
Udit Satija ◽  
Barathram Ramkumar
2011 ◽  
Vol 42 (10) ◽  
pp. 55-61 ◽  
Author(s):  
Yu Jiang ◽  
Li Qin ◽  
Yuelei Zhang ◽  
Jingping Wu

Gear failures happen frequently in the gear mechanisms, and an unexpected serious gear fault may cause severe damage on the machinery. Hence, precise gear fault detection at the early stage is imperative to ensure the normal operation of the machinery. Independent component analysis (ICA) has been paid more and more attention for its powerful ability of separating the useful vibration source from the multi-sensor observations to enhance the fault feature extraction. This is the so called blind source separation (BSS) procedure. However, the popular ICA model may suffer from two limitations. One is the linear mixture assumption, and the other is the lack of sensor channels. Up to now, only limited research considered the nonlinear ICA model in the field of mechanic fault diagnosis, and techniques for the situation where the number of sensor channels is less than the number of independent sources for gear defect detection are scarce. In order to extract the useful source involved with the gear fault characteristics in single-channel vibration signal processing, this work presents a new method based on the empirical mode decomposition (EMD) and nonlinear ICA. The EMD was firstly employed to decompose the vibration signal into a number of intrinsic mode functions (IMFs), and then these IMFs were taken as the multi-channel observations. The post-nonlinear (PNL) ICA model based on the radial basis function (RBF) neural network was applied to the nonlinear BSS procedure on the IMFs. The experimental vibration data acquired from the gear fault test-bed were processed for the validation of the proposed method. The nonlinear ICA method has been compared with the linear ICA and non-ICA based approaches. The analysis results show that the sensitive characteristics of the gear meshing vibration can be separated from the single channel measurement by the proposed method, and the fault diagnosis precision can be enhanced significantly. The detection rate can be increased by 3.75% or better when the ICA based preprocessing is carried out, and the proposed nonlinear ICA outperforms the linear ICA detection model.


Sign in / Sign up

Export Citation Format

Share Document