Multi-model based gain-scheduling sliding mode control design for an intelligent railway vehicle system

Author(s):  
T. Gajdar ◽  
P. Korondi ◽  
Y. Suda
2009 ◽  
Vol 147-149 ◽  
pp. 264-271
Author(s):  
Shiuh Jer Huang ◽  
Chun Ming Chiu ◽  
M.C. Huang

Piezoelectric friction actuating mechanism is chosen to construct long traveling range sub-micro X-Y positioning table. LuGre friction model is employed to simulate the friction dynamics of this positioning mechanism. The optimization scheme of Matlab toolbox is adopted to search the optimal friction model parameters. However, this piezoelectric actuating system has obvious nonlinear and time-varying dead-zone offset control voltage due to the static friction and preload. The estimated LuGre dynamic model is still not accurate enough for model-based precision control design. Hence, the adaptive sliding mode control (SMC) with robust behavior is employed to design the nonlinear controller for this piezoelectric friction actuating mechanism. The Laypunov-like design strategy is adopted to achieve the system stability criterion. The dynamic experimental results of the proposed nonlinear controllers are compared with that of a model-based PID controller, too.


2017 ◽  
Vol 40 (7) ◽  
pp. 2227-2239 ◽  
Author(s):  
Haoping Wang ◽  
Qiankun Qu ◽  
Yang Tian

In this paper, a nonlinear observer based sliding mode control (NOSMC) approach for air-path and a model-based observer for oxygen concentration in the diesel engine equipped with a variable geometry turbocharger and exhaust gas recirculation is introduced. We propose a less conservative observer design technique for Lipschitz nonlinear systems using Ricatti equations. The observer gains are obtained by solving the linear matrix inequality (LMI). Then a robust nonlinear control method, sliding mode control is applied for the states of intake and exhaust manifold pressure and compressor mass flow rate for the sake of the minimization of emissions. The proposed NOSMC controller is applied on a mean value model of turbocharged diesel engine. Besides this, a model-based observer is developed to estimate the oxygen concentration in the intake and exhaust manifolds owing to its significance in reducing emissions of diesel engines. The validation and efficiency of the proposed method are demonstrated by AMESim and Matlab/Simulink co-simulation results.


Sign in / Sign up

Export Citation Format

Share Document