Nonlinear observer based sliding mode control and oxygen fraction estimation for diesel engine

2017 ◽  
Vol 40 (7) ◽  
pp. 2227-2239 ◽  
Author(s):  
Haoping Wang ◽  
Qiankun Qu ◽  
Yang Tian

In this paper, a nonlinear observer based sliding mode control (NOSMC) approach for air-path and a model-based observer for oxygen concentration in the diesel engine equipped with a variable geometry turbocharger and exhaust gas recirculation is introduced. We propose a less conservative observer design technique for Lipschitz nonlinear systems using Ricatti equations. The observer gains are obtained by solving the linear matrix inequality (LMI). Then a robust nonlinear control method, sliding mode control is applied for the states of intake and exhaust manifold pressure and compressor mass flow rate for the sake of the minimization of emissions. The proposed NOSMC controller is applied on a mean value model of turbocharged diesel engine. Besides this, a model-based observer is developed to estimate the oxygen concentration in the intake and exhaust manifolds owing to its significance in reducing emissions of diesel engines. The validation and efficiency of the proposed method are demonstrated by AMESim and Matlab/Simulink co-simulation results.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Bo Wang ◽  
Peng Shi ◽  
Hamid Reza Karimi ◽  
Cheng Chew Lim

This paper considers the sliding mode control problem for a kind of dynamic delay system. First by utilizing Lyapunov stability theory and a linear matrix inequality technique, an observer based on delayed output feedback is constructed. Then, an integral sliding surface is presented to realize the sliding mode control for the system with the more available stability condition. Finally, some numerical simulations are implemented to demonstrate the validity of the proposed control method.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hong-Liang Gao ◽  
Hong-Cong Zhang ◽  
Xiao-Ling Li

Due to the nonlinear characteristics of the vehicle speed system, its stability is difficult to control. This paper analyzes the stability and traceability of the vehicle speed system under nonlinear characteristics. A sliding mode control method of the nonlinear system state observation based on linear matrix inequalities (LMIs) is proposed. In the proposed control method, Lyapunov function is used as the control function to track the position and speed of the vehicle speed system in real time. In the design process of the controller, the successive scaling method (SSM) is designed to improve the tracking accuracy. The simulation results demonstrate that the sliding mode control can effectively track the position of the vehicle speed system, which has better stability and traceability for the nonlinear vehicle speed system.


2021 ◽  
Vol 2087 (1) ◽  
pp. 012056
Author(s):  
Dechun Zhao ◽  
Yansong Song ◽  
Yang Liu ◽  
Baishuo Zhang ◽  
Tianci Liu

Abstract In order to solve the control problem of the tip-tilt mirror under the unknown disturbance, a nonlinear disturbance observer with adaptive ability based on the sliding mode control is designed.Firstly, the sliding mode control method of the tip-tilt mirror system is established with Lyapunov functions. Secondly, an adaptive nonlinear disturbance observer is developed on a basis of observer model. Finally, the proposed sliding mode control method is combined with a nonlinear observer with adaptive capability to achieve the goal of improving the control accuracy of the system, while also reducing the chattering caused by the system. The experiment proves that this method is achievable. The experimental results show that the tracking error of the azimuth axis is reduced from 1.637μrad to 1.083μrad, and the accuracy is improved by about 51.2%. The tracking error of the pitch axis is reduced from 1.966μrad to 1.614μrad, and the accuracy is improved by about 21.8%. This method can greatly weaken the inherent chattering and external disturbance of the system, and improve the stability of the tip-tilt mirror system.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Pengfei Guo ◽  
Jie Zhang ◽  
Ming Lyu ◽  
Yuming Bo

This paper considers the sliding mode control of multiagent systems (MAS) with time-delay and uncertainties in terms of linear matrix inequality (LMI). By constructing virtual feedback control method, the design of control system is simplified for time-delay independent system without uncertainties. For a class of uncertain systems with single time-delay, the essence of SMC design is analyzed in order to acquire a simple method for designing sliding surface. In terms of multiple timedelay system with uncertainties, a sufficient condition for sliding surface with independent time-delay is acquired, while control law is also designed to ensure the robust stability of closed-loop system. Finally, the effectiveness of conclusion is demonstrated by simulation results.


2013 ◽  
Vol 392 ◽  
pp. 324-328
Author(s):  
Guang Hui Chang ◽  
Shi Jian Zhu ◽  
Jing Jun Lou

Giant magnetostrictive actuator (GMA) has been used in precise position, active vibration control etc. for its merits of large output force and displacement. At low drive level, GMA presents linear relation between displacement and input current, while nonlinear appears when applied moderate or high drive level. This paper addresses the development of model-based adaptive sliding mode control designs for GMA operating in nonlinear and hysteretic regimes. Homogenized energy model in combination with a quadratic moment rotation model for magnetostriction is adopted in this paper to describe hysteresis of GMA, and its inverse model is employed as a inverse filter before GMA system to compensate the hysteresis and nonlinear. The proposed control law guaranteed global stability of the control system with certain accuracy in tracking desired trajectories. Simulation result verified the correctness and effectiveness of the extracted control method.


Author(s):  
Zongxuan Li ◽  
Renxiang Bu ◽  
Hugan Zhang

To address the unmeasured velocity, external disturbance and internal model uncertainty for following the path of an under-actuated ship, the paper presents a sliding mode control method based on the radial basis function(RBF) neural network and the velocity observer. To enhance the RBF performance of approximating the unknown, an arc tangent function was exploited in the RBF neural network to update its weight values. Then, the nonlinear observer was built via the hyperbolic tangent function to deal with the unmeasured velocity of the ship. Furthermore, in order to avoid overshoots when the ship is moving to its way points, the virtual paths of a variable circle based on the turning angle were designed at the joints of the path of the ship to enhance its path following capability. Finally, the simulation results show that the sliding mode controller designed in the paper can force the ship to follow accurately the reference path in case of time-varying disturbances without measured velocity and enhance the path following performance of the ship and the accuracy of the RBF neural network, thus demonstrating its effectiveness.


2020 ◽  
Vol 26 (23-24) ◽  
pp. 2243-2260 ◽  
Author(s):  
Mohammad Reza Homaeinezhad ◽  
Sadeq Yaqubi

In this article, a new control method is proposed based on finite-time discrete sliding mode control for uncertain multi-input multi-output systems which are affine to their inputs considering uncertain input multipliers in the case where signs of input gains remain constant over uncertainty spaces. In addition, a method for solving a set of convex control inequalities is introduced. The proposed control strategy is based on merging data obtained from investigation of common candidate Lyapunov functions assigned to various subsystems and their subsequent decoupling based on matrix elementary row operations. Initially, separate sliding functions corresponding to a single degree of freedom are assigned to each subsystem in the overall multi-input multi-output system, which results in obtaining a convex inequality corresponding to input bounds. Stacking the data obtained from various subsystems, the product of the uncertain input gain matrix in input vector is obtained as the middle term in a set of convex inequalities. Subsequently, the convex inequality is solved according to a set of matrix elementary row operations transforming the corresponding input matrix to row echelon form such that the bounds of each input are clearly expressed. Then, based on assigning input bounds proximity factors to each lower bound–upper bound duo, appropriate control inputs are generated. Chattering effects are eliminated as no switching term is included in construction of the control model. Effectiveness of the proposed method is demonstrated using numerical simulations. The implementation of control algorithm using microprocessors is also illustrated, indicating the feasibility of digital application.


2011 ◽  
Vol 109 ◽  
pp. 541-546 ◽  
Author(s):  
Hui Da Duan ◽  
Yan Tao Tian ◽  
De Jun Liu

A new sliding mode controller for trajectory tracking of ball and plate system is proposed. In the controller, a nonlinear observer which is independent on plant model is used to observer the uncertainties and disturbance of the system. This paper proved that the nonlinear observer is convergence by properly selecting the parameters of observer. Sliding mode controller based on nonlinear observer is designed for the ball and plate system and it can guarantee stabilization of closed-loop system. The results of simulation and experiments indicate that the proposed nonlinear observer can observer uncertainties and disturbance of system, the proposed sliding mode control method is effectively to solve the problems of trajectory tracking in the nonlinear ,uncertain system.


Sign in / Sign up

Export Citation Format

Share Document