Effect of relative humidity on friction behavior of the head/disk interface

Author(s):  
Hong Tain ◽  
T. Matsudaira
1993 ◽  
Vol 115 (1) ◽  
pp. 28-35 ◽  
Author(s):  
Hong Tian ◽  
Takeo Matsudaira

Stiction at the head/disk interface has become one of the major concerns as smoother surfaces are required to achieve lower flying heights of magnetic heads over magnetic disks. In this paper, static friction forces on three types of disk samples with different surface roughness values were measured at various relative humidities. It was found that static friction coefficients were well correlated with total thickness of liquid (lubricant and adsorbed water) at the head/disk interface. The experimental data also agreed fairly well with the calculated values based on a proposed stiction model. It is implied in the stiction model that the bearing ratio or the shape of asperity height distribution, especially the part of high asperities, determines the stiction force. Moreover, long-term stiction was investigated on the unlubricated disk surfaces at 80 percent relative humidity and on the lubricated disks at 5 percent relative humidity to separate the effects of water build-up and lubricant build-up at the head/disk interface. It appears that long-term stiction occurs only when enough mobile lubricant is present and the thickness of liquid at the head/disk interface is close to a critical thickness value which is related to surface roughness values.


2020 ◽  
Vol 56 (5) ◽  
pp. 1-7
Author(s):  
Tan D. Trinh ◽  
Christoph Schade ◽  
Michael Johnson ◽  
Frank E. Talke

2017 ◽  
Vol 65 (2) ◽  
Author(s):  
Liane M. Matthes ◽  
Frederick E. Spada ◽  
Andrey Ovcharenko ◽  
Bernhard E. Knigge ◽  
Frank E. Talke

2005 ◽  
Vol 97 (12) ◽  
pp. 126106 ◽  
Author(s):  
Raymond R. Dagastine ◽  
Lee R. White ◽  
Paul M. Jones ◽  
Yiao-Tee Hsia

2014 ◽  
Vol 50 (3) ◽  
pp. 137-143 ◽  
Author(s):  
Bruno Marchon ◽  
Xing-Cai Guo ◽  
Bala Krishna Pathem ◽  
Franck Rose ◽  
Qing Dai ◽  
...  

Author(s):  
Bo Liu ◽  
MingSheng Zhang ◽  
Yijun Man ◽  
Shengkai Yu ◽  
Gonzaga Leonard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document