Deterministic Creation of Quantum Emitters in Hexagonal Boron Nitride on Non-patterned Substrates

Author(s):  
Xiaohui Xu ◽  
Zachariah O. Martin ◽  
Demid Sychev ◽  
Alexei S. Lagutchev ◽  
Yong Chen ◽  
...  
Small ◽  
2021 ◽  
pp. 2008062
Author(s):  
Yongliang Chen ◽  
Xiaoxue Xu ◽  
Chi Li ◽  
Avi Bendavid ◽  
Mika T. Westerhausen ◽  
...  

2021 ◽  
Vol 13 (39) ◽  
pp. 47283-47292
Author(s):  
Yongliang Chen ◽  
Chi Li ◽  
Simon White ◽  
Milad Nonahal ◽  
Zai-Quan Xu ◽  
...  

Author(s):  
Fatemeh Tarighitabesh ◽  
Qaem Hassanzada ◽  
Mohammad Hadian ◽  
Arsalan Hashemi ◽  
Abdolhosseini Sarsari ◽  
...  

2021 ◽  
Author(s):  
Qinghai Tan ◽  
Jia-Min Lai ◽  
Xue-Lu Liu ◽  
Dan Guo ◽  
Yong-Zhou Xue ◽  
...  

Abstract Quantum emitters are needed for a myriad of applications ranging from quantum sensing to quantum computing. Hexagonal boron nitride (hBN) quantum emitters are the most promising solid-state platform to date due to its high brightness, stability, and the possibility of spin photon interface. However, the understanding of the physical origins of the single-photon emitters (SPEs) is still limited. Here, we present concrete and conclusive evidence that the dense SPEs in hBN, across entire visible spectrum, can be well explained by donor-acceptor pairs (DAPs). Based on the DAP transition generation mechanism, we have calculated their wavelength fingerprint, matching well with the experimentally observed photoluminescence spectrum. Our work serves as a step forward for the physical understanding of SPEs in hBN and their applications in quantum technologies.


2016 ◽  
Vol 8 (43) ◽  
pp. 29642-29648 ◽  
Author(s):  
Sumin Choi ◽  
Toan Trong Tran ◽  
Christopher Elbadawi ◽  
Charlene Lobo ◽  
Xuewen Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document