A software for simulation and controller development for high frequency high voltage power supplies

Author(s):  
H. Bulent Ertan ◽  
T. Camlikaya ◽  
O. Demirel ◽  
C. Kasnakoglu
2003 ◽  
Vol 66-68 ◽  
pp. 543-548 ◽  
Author(s):  
T. Bonicelli ◽  
R. Claesen ◽  
A. Coletti ◽  
P.L. Mondino ◽  
M. Pretelli ◽  
...  

Author(s):  
F. Schilling ◽  
S. Passon ◽  
J. Meisner ◽  
A. Walker ◽  
M. Kurrat ◽  
...  

Author(s):  
N. F. Ziegler

A high-voltage terminal has been constructed for housing the various power supplies and metering circuits required by the field-emission gun (described elsewhere in these Proceedings) for the high-coherence microscope. The terminal is cylindrical in shape having a diameter of 14 inches and a length of 24 inches. It is completely enclosed by an aluminum housing filled with Freon-12 gas at essentially atmospheric pressure. The potential of the terminal relative to ground is, of course, equal to the accelerating potential of the microscope, which in the present case, is 150 kilovolts maximum.


Author(s):  
Dmitri Vinnikov ◽  
Tanel Jalakas ◽  
Indrek Roasto

Analysis and Design of 3.3 kV IGBT Based Three-Level DC/DC Converter with High-Frequency Isolation and Current Doubler RectifierThe paper presents the findings of a R&D project connected to the development of auxiliary power supply (APS) for the high-voltage DC-fed rolling stock applications. The aim was to design a new-generation power converter utilizing high-voltage IGBT modules, which can outpace the predecessors in terms of power density, i.e. to provide more power for smaller volumetric space. The topology proposed is 3.3 kV IGBT-based three-level neutral point clamped (NPC) half-bridge with high-frequency isolation transformer and current doubler rectifier that fulfils all the targets imposed by the designers. Despite an increased component count the proposed converter is very simple in design and operation. The paper provides an overview of the design with several recommendations and guidelines. Moreover, the simulation and experimental results are discussed and the performance evaluation of the proposed converter is presented.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 23786-23794
Author(s):  
Abhishek Kar ◽  
Mitiko Miura-Mattausch ◽  
Mainak Sengupta ◽  
Dondee Navaroo ◽  
Hideyuki Kikuchihara ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1736
Author(s):  
Jaean Kwon ◽  
Rae-Young Kim

High-voltage DC power supplies are used in several applications, including X-ray, plasma, electrostatic precipitator, and capacitor charging. However, such a high-voltage power supply has problems, such as a decrease in reliability, owing to an increase in output ripple voltage, and a decrease in power density, owing to an increase in volume. Therefore, this study proposes a method for improving the power density of a parallel resonant converter using the parasitic capacitor of the secondary side of the transformer. Due to the fact that high-voltage power supplies have many turns on the secondary side, a significant number of parasitic capacitors are generated. In addition, in the case of a parallel resonant converter, because the transformer and the primary resonant capacitor are connected in parallel, the parasitic capacitor component generated on the secondary side of the transformer can be equalized and used. A parallel cap-less resonant converter structure developed using the parasitic components of such transformers is proposed. Primary side and secondary side equivalent model analyses are conducted in order to derive new equations and gain waveforms. Finally, the validity of the proposed structure is verified experimentally.


Sign in / Sign up

Export Citation Format

Share Document