Performance assessment of a Moving-Bed Heat Exchanger with a sensible heat transfer medium for solar central receiver power plants

Author(s):  
Louy Qoaider ◽  
Qahtan Thabit ◽  
Suhil Kiwan
2007 ◽  
Vol 130 (1) ◽  
Author(s):  
Doerte Laing ◽  
Wolf-Dieter Steinmann ◽  
Michael Fiß ◽  
Rainer Tamme ◽  
Thomas Brand ◽  
...  

Cost-effective integrated storage systems are important components for the accelerated market penetration of solarthermal power plants. Besides extended utilization of the power block, the main benefits of storage systems are improved efficiency of components, and facilitated integration into the electrical grids. For parabolic trough power plants using synthetic oil as the heat transfer medium, the application of solid media sensible heat storage is an attractive option in terms of investment and maintenance costs. For commercial oil trough technology, a solid media sensible heat storage system was developed and tested. One focus of the project was the cost reduction of the heat exchanger; the second focus lies in the energetic and exergetic analysis of modular storage operation concepts, including a cost assessment of these concepts. The results show that technically there are various interesting ways to improve storage performance. However, these efforts do not improve the economical aspect. Therefore, the tube register with straight parallel tubes without additional structures to enhance heat transfer has been identified as the best option concerning manufacturing aspects and investment costs. The results of the energetic and exergetic analysis of modular storage integration and operation concepts show a significant potential for economic optimization. An increase of more than 100% in storage capacity or a reduction of more than a factor of 2 in storage size and therefore investment cost for the storage system was calculated. A complete economical analysis, including the additional costs for this concept on the solar field piping and control, still has to be performed.


2021 ◽  
Author(s):  
Yousuf Farooq

The aim of this project was to design a condensing heat exchanger to recover waste heat from an industrial clothes dryer. Industrial cloth dryers are inefficient in their use of energy because almost all of the energy input in the dryer is wasted in the atmosphere, and thus there is great potential for heat recovery. This energy can be used to preheat the incoming cold water, and the conventional heater can then heat the water to a final temperature. The warm moist air from the dryer carries both sensible and latent heat, and in order to design this heat recovery condensing heat exchanger, the heat transfer by both mass and sensible heat has to be accounted for. The basis of this heat and mass transfer problem was the energy balance at the interface, and separate models for the calculation of latent and sensible heat transfer were used. The mass transfer coefficients were obtained from an analogy with heat transfer, and the unknown interface temperature was solved for iteratively. The data for this design was collected from a 20 kW dryer, and the heat recovery from that dryer was observed to be about 17.3%. This heat recovery condensing heat exchanger efficiency can be enhanced by the addition of more coils to the heat exchanger. An improvement in the overall results can be expected if a practical study is done on the condensation heat exchanger for an industrial cloth dryer.


Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1143 ◽  
Author(s):  
Kevin Fontaine ◽  
Takeshi Yasunaga ◽  
Yasuyuki Ikegami

Ocean thermal energy conversion (OTEC) uses the natural thermal gradient in the sea. It has been investigated to make it competitive with conventional power plants, as it has huge potential and can produce energy steadily throughout the year. This has been done mostly by focusing on improving cycle performances or central elements of OTEC, such as heat exchangers. It is difficult to choose a suitable heat exchanger for OTEC with the separate evaluations of the heat transfer coefficient and pressure drop that are usually found in the literature. Accordingly, this paper presents a method to evaluate heat exchangers for OTEC. On the basis of finite-time thermodynamics, the maximum net power output for different heat exchangers using both heat transfer performance and pressure drop was assessed and compared. This method was successfully applied to three heat exchangers. The most suitable heat exchanger was found to lead to a maximum net power output 158% higher than the output of the least suitable heat exchanger. For a difference of 3.7% in the net power output, a difference of 22% in the Reynolds numbers was found. Therefore, those numbers also play a significant role in the choice of heat exchangers as they affect the pumping power required for seawater flowing. A sensitivity analysis showed that seawater temperature does not affect the choice of heat exchangers, even though the net power output was found to decrease by up to 10% with every temperature difference drop of 1 °C.


Author(s):  
Maritza Ruiz ◽  
Van P. Carey

The energy conversion effectiveness of the central receiver absorber in concentrating solar thermal power systems is dictated primarily by heat losses, material temperature limits, and pumping power losses. To deliver concentrated solar energy to a gas for process heat applications or gas cycle power generation, there are a wide variety of compact heat exchanger finned surfaces that could be used to enhance the convective transfer of absorbed solar energy to the gas stream flowing through the absorber. In such circumstances, a key design objective for the absorber is to maximize the heat transfer thermodynamic performance while minimizing the pumping power necessary to drive the gas flow through the fin matrix. This paper explores the use of different performance metrics to quantify the combined heat transfer, thermodynamic and pressure loss effectiveness of enhanced fins surfaces used in solar thermal absorbers for gas heating. Previously defined heat exchanger performance metrics, such as the “goodness factor”, are considered, and we develop and explore the use of a new metric, the “loss factor”, for determining the preferred enhanced fin matrix surfaces for concentrated solar absorbers. The loss factor, defined as the normalized exergy loss in the receiver, can be used for nondimensional analysis of the desirable qualities in an optimized solar receiver design. In comparison to previous goodness factor methods, the loss factor metric has the advantage that it quantifies the trade-off between trying to maximize the solar exergy transferred to the gas (high heat transfer rate and delivery at high temperature) and minimizing the pumping exergy loss. In this study, the loss factor is used to compare current solar receiver designs, and designs that use a variety of available plate-finned compact heat transfer surfaces with known Colburn factor (j) and friction factor (f) characteristics. These examples demonstrate how the loss factor metric can be used to design and optimize novel solar central receiver systems, and they indicate fin matrix surfaces that are particularly attractive for this type of application.


2020 ◽  
Vol 361 ◽  
pp. 1038-1059
Author(s):  
Sávio L. Bertoli ◽  
Juscelino de Almeida ◽  
Carolina K. de Souza ◽  
Aline Lovatel ◽  
Natan Padoin ◽  
...  

2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Doerte Laing ◽  
Thomas Bauer ◽  
Dorothea Lehmann ◽  
Carsten Bahl

For future parabolic trough plants direct steam generation in the absorber pipes is a promising option for reducing the costs of solar thermal power generation. These new solar thermal power plants require innovative storage concepts, where the two-phase heat transfer fluid poses a major challenge. A three-part storage system is proposed where a phase change material (PCM) storage will be deployed for the two-phase evaporation, while concrete storage will be used for storing sensible heat, i.e., for preheating of water and superheating of steam. A pinch analysis helps to recognize interface constraints imposed by the solar field and the power block and describes a way to dimension the latent and sensible components. Laboratory test results of a PCM test module with ∼140 kgNaNO3, applying the sandwich concept for enhancement of heat transfer, are presented, proving the expected capacity and power density. The concrete storage material for sensible heat was improved to allow the operation up to 500°C for direct steam generation. A storage system with a total storage capacity of ∼1 MWh is described, combining a PCM module and a concrete module, which will be tested in 2009 under real steam conditions around 100 bars.


Sign in / Sign up

Export Citation Format

Share Document