scholarly journals Development and Performance Assessment of a Moving Bed Heat Exchanger for Solar Central Receiver Power Plants

2015 ◽  
Vol 69 ◽  
pp. 748-757 ◽  
Author(s):  
T. Baumann ◽  
S. Zunft
Author(s):  
Christina Salpingidou ◽  
Dimitrios Misirlis ◽  
Zinon Vlahostergios ◽  
Stefan Donnerhack ◽  
Michael Flouros ◽  
...  

This work presents an exergy analysis and performance assessment of three recuperative thermodynamic cycles for gas turbine applications. The first configuration is the conventional recuperative (CR) cycle in which a heat exchanger is placed after the power turbine (PT). In the second configuration, referred as alternative recuperative (AR) cycle, a heat exchanger is placed between the high pressure and the PT, while in the third configuration, referred as staged heat recovery (SHR) cycle, two heat exchangers are employed, the primary one between the high and PTs and the secondary at the exhaust, downstream the PT. The first part of this work is focused on a detailed exergetic analysis on conceptual gas turbine cycles for a wide range of heat exchanger performance parameters. The second part focuses on the implementation of recuperative cycles in aero engines, focused on the MTU-developed intercooled recuperative aero (IRA) engine concept, which is based on a conventional recuperation approach. Exergy analysis is applied on specifically developed IRA engine derivatives using both alternative and SHR recuperation concepts to quantify energy exploitation and exergy destruction per cycle and component, showing the amount of exergy that is left unexploited, which should be targeted in future optimization actions.


2016 ◽  
Vol 2 (4) ◽  
Author(s):  
Gaoming Ge ◽  
Carey J. Simonson

Hitachi-GE developed a 300-MWe-class modular simplified and medium small reactor (DMS) between 2000 and 2004. It was designed to have merits over traditional nuclear power plants in areas of lower initial capital investment, flexibility, enhanced safety, and security. The balance of plant (BOP) system of the DMS was originally designed for supplying just electricity. In this study, the cogeneration DMS that supplies both electricity and heat is under investigation. The heat exchanger (HX) network, mainly consisting of the BOP heat exchanger, water pump, and the heat exchangers that deliver heat to the thermal utilization (TU) applications, must operate in an efficient way to keep the overall system costs low. In this paper, the configuration of a heat exchanger network that serves for various TU applications is investigated first. A numerical model for the heat exchanger network is built, and sensitivity studies are performed to estimate the energy efficiency and exergy efficiency of the whole heat exchanger network under different design and operating conditions (e.g., different water temperatures and flow rates). Important design and operating parameters, which significantly impact the performance of the network, are evaluated and presented.


Author(s):  
Christina Salpingidou ◽  
Dimitrios Misirlis ◽  
Zinon Vlahostergios ◽  
Stefan Donnerhack ◽  
Michael Flouros ◽  
...  

This work presents an exergy analysis and performance assessment of three recuperative thermodynamic cycles for gas turbine applications. The first configuration is the conventional recuperative cycle in which a heat exchanger is placed after the power turbine. In the second configuration, referred as alternative recuperative cycle, a heat exchanger is placed between the high pressure and the power turbine, while in the third configuration, referred as staged heat recovery cycle, two heat exchangers are employed, the primary one between the high and power turbines and the secondary at the exhaust, downstream the power turbine. The first part of this work is focused on a detailed exergetic analysis on conceptual gas turbine cycles for a wide range of heat exchanger performance parameters. The second part focuses on the implementation of recuperative cycles in aero engines, focused on the MTU-developed Intercooled Recuperative Aero (IRA) engine concept, which is based on a conventional recuperation approach. Exergy analysis is applied on specifically developed IRA engine derivatives using both alternative and staged heat recovery recuperation concepts to quantify energy exploitation and exergy destruction per cycle and component, showing the amount of exergy that is left unexploited, which should be targeted in future optimization actions.


Author(s):  
Pedro Isaza ◽  
W. David Warnica ◽  
Markus Bussmann

A novel thermal performance relation is presented for a moving bed heat exchanger (MBHE) and its application is demonstrated via a sample rating calculation. Unlike conventional fluid-fluid heat exchangers, where effectiveness relations are a function of the heat capacity ratio, C, and the number of thermal transfer units, NTU, the MBHE expression also depends on the Biot number, Bi, due to heat conduction in the solids. The effectiveness curve for an MBHE operating under the special condition C = 0 is presented, along with its application to a proposed system for solar central receiver plants [1].


2012 ◽  
Vol 22 (3) ◽  
pp. 4801104-4801104 ◽  
Author(s):  
E. Rizzo ◽  
R. Heller ◽  
Laura Savoldi Richard ◽  
R. Zanino

Sign in / Sign up

Export Citation Format

Share Document