Performance improvement of stepped solar still using PCM with internal reflectors integrated with an evacuated tube solar water collector

Author(s):  
A. E. Kabeel ◽  
Mohamed M. Khairat Dawood ◽  
Tamer Nabil ◽  
Bader Essa Elnoafal
2014 ◽  
Vol 13 (2) ◽  
pp. 333-344
Author(s):  
Karuppusamy Sampathkumar ◽  
Palanisamy Senthilkumar

2021 ◽  
Vol 1034 (1) ◽  
pp. 012084
Author(s):  
Muhammad Nizar Ramadhan ◽  
Rachmat Subagyo ◽  
Muhammad Haris Sa’dillah ◽  
Andy Nugraha

Desalination ◽  
2013 ◽  
Vol 325 ◽  
pp. 56-64 ◽  
Author(s):  
Z.M. Omara ◽  
Mohamed A. Eltawil ◽  
ElSayed A. ElNashar

2018 ◽  
Vol Volume-2 (Issue-4) ◽  
pp. 960-965
Author(s):  
Amarnath. K ◽  
Dr. Gopal. P ◽  
Sridharan. M | Dr. T. Senthil Kumar ◽  

2018 ◽  
Vol Volume-2 (Issue-4) ◽  
pp. 966-970
Author(s):  
S. Paramaguru ◽  
P. Sivakumar ◽  
M. Sridharan | Dr. T. Senthilkumar ◽  

2020 ◽  
Vol 5 (1) ◽  
pp. 46-52
Author(s):  
Nguyen Viet Linh Le ◽  
Tri Hieu Le ◽  
Thi Minh Hao Dong ◽  
Van Vang Le ◽  
Dinh Tung

Recently, due to global warming and urbanization, there are many major cities that may face the challenge of day zero next decades. Obviously, water is an indispensable component for maintaining life on the earth. Although portable water is required of the hour, the quantity of available freshwater is impacted significantly by sea-level rise and pollution from industrialization. As a consequence of the global water crisis, different methods for clean water production from brackish water have been studied and developed in practice, however, the solar distillation of water is the most economical and desirable approach due to this method utilize solar energy that is the environmentally friendly and economical resource. Over the last 15 years, the impressive price drop of the photovoltaic solar collector (PV/T) makes them popular and easy to access. As a result, the employment of PV/T in solar stills is emerging as a potential device for water distillation. Therefore, in this paper, an active solar distiller combined with a photovoltaic panel has been reviewed for improvement of the distillate yield and effectiveness of solar photovoltaic. This review work presents a variety of studies on various types of solar still (for example conventional solar still (CSS), double slope solar still (DSSS), stepped solar distiller, and cascade solar still) couples with different solar water collectors (such as flat plate collector (FPC) and evacuated tubes collector (ETC)) and solar photovoltaic modules. It is obtained that the hybrid PV/T active solar still improves the distillate yield, energy efficiency, and exergy efficiency as compared to passive mode. The cooling method enhances the performance of the photovoltaic solar collector as well as the productivity of solar still. Moreover, the environmental economic estimation reveals that the solar still coupled with the PV/T mitigated considerably the amount of CO2. It can be stated that it is suitable to commercialize the hybrid PV/T active solar still for supplying not only electricity but drinking water also. Finally, this review paper also suggests the scope for the research in the future.


2021 ◽  
Author(s):  
Jamie Fine

Society’s use of fossil fuels has led to increasingly high levels of CO2 in the atmosphere. These levels have been linked to global average temperature rises, and increases in the severity and frequency of major weather events. To combat these effects, nations around the world have committed to reducing their CO2 emissions, and transition to renewable energy. This thesis focuses on the development of a novel solar heating system, which combines a hybrid solar panel and cascade heat pump. The thesis begins by presenting a high-level literature review of solar and heat pump technologies, followed by the initial design development of the system. Two design iterations are presented, illustrating that the final design was selected because it exhibits improved peak heat output, and reduced sensitivity to panel temperature. Next, a manuscript-based chapter is presented that focuses on utilizing the proposed solar heating system for water distillation. Case studies are presented that compare the performance of the proposed system with a solar still at four different locations. The final conclusion from these studies is that using the proposed system offers area-based performance improvements of 780% compared to a basic solar still. A second manuscript-based study is then presented, which focuses on utilizing the proposed solar heating system for domestic hot water production. Additional case studies are detailed that compare the proposed system to an evacuated tube design, and a single heat pump. The conclusions from these studies are that the proposed system exceeds the performance of the evacuated tube system by up to 64%, and that the proposed system is most beneficial during seasons with higher average dry-bulb temperatures, and increased solar irradiation. A final manuscript-based study is then presented, which focuses on a methodology for improving alternate mode thermal performance estimates for hybrid solar panels. The conclusion from this study is that the proposed methodology can successfully estimate thermal performance within 5% of actual values. Each of these studies contributes to the project goal of developing a novel solar energy heating system, which can be further developed to reduce global CO2 emissions, and reduce the effects of climate change.


Sign in / Sign up

Export Citation Format

Share Document