A New Optimal Controller for Formation Control of Autonomous Underwater Vehicles under Communication Constraints

Author(s):  
Chhavi Suryendu ◽  
Bidyadhar Subudhi
2014 ◽  
Vol 641-642 ◽  
pp. 1264-1268
Author(s):  
Zi Qi Lin ◽  
Yong Jie Pang ◽  
Da Peng Jiang

While the single AUV is sometimes unable to meet the complex and difficult tasks demand, the advantages of the multiple autonomous underwater vehicles (MAUV) system was proposed. Several MAUV formation methods were studied and master-slave collaborative formation method was focused. The law and algorithm of master-slave formation control was designed and analyzed. Representative formations for different tasks were proposed and the advantages and disadvantages were discussed.


2021 ◽  
Vol 33 (1) ◽  
pp. 151-157
Author(s):  
Akihiro Okamoto ◽  
◽  
Motonobu Imasato ◽  
Shunka C. Hirao ◽  
Hidenori Sekiguchi ◽  
...  

The formation control of multiple autonomous underwater vehicles (AUVs) is increasingly becoming a vital factor in enhancing the efficiency of ocean resources exploration. However, it is currently difficult to deploy such a package of AUVs for operation at sea because of their large size. The aim of our study is to create a demonstration system for formation control algorithms using actual hardware. To implement a prototype system, we developed a testbed AUV usable in a test basin and performed a simple formation control test in the Actual Sea Model Basin of the National Maritime Research Institute, Japan. Two AUVs, the simulated “virtual” leader and the developed “real” follower, communicate through an acoustic link and hence cruise to maintain a constant distance between them. Tests for more sophisticated formation control algorithms will be enabled using the system; consequently rapid implementation at sea will be realized.


Sign in / Sign up

Export Citation Format

Share Document