Stabilization of a Lasing Frequency of a THz-QCL in Free Running for Long-Term Phase-Locking

Author(s):  
Yoshihisa Irimajiri
2012 ◽  
Vol 48 (7) ◽  
pp. 839-846 ◽  
Author(s):  
Dong Hou ◽  
Jiutao Wu ◽  
Quansheng Ren ◽  
Jianye Zhao

2005 ◽  
Vol 93 (3) ◽  
pp. 1197-1208 ◽  
Author(s):  
Theoden I. Netoff ◽  
Matthew I. Banks ◽  
Alan D. Dorval ◽  
Corey D. Acker ◽  
Julie S. Haas ◽  
...  

Understanding the mechanistic bases of neuronal synchronization is a current challenge in quantitative neuroscience. We studied this problem in two putative cellular pacemakers of the mammalian hippocampal theta rhythm: glutamatergic stellate cells (SCs) of the medial entorhinal cortex and GABAergic oriens-lacunosum-moleculare (O-LM) interneurons of hippocampal region CA1. We used two experimental methods. First, we measured changes in spike timing induced by artificial synaptic inputs applied to individual neurons. We then measured responses of free-running hybrid neuronal networks, consisting of biological neurons coupled (via dynamic clamp) to biological or virtual counterparts. Results from the single-cell experiments predicted network behaviors well and are compatible with previous model-based predictions of how specific membrane mechanisms give rise to empirically measured synchronization behavior. Both cell types phase lock stably when connected via homogeneous excitatory-excitatory (E-E) or inhibitory-inhibitory (I-I) connections. Phase-locked firing is consistently synchronous for either cell type with E-E connections and nearly anti-synchronous with I-I connections. With heterogeneous connections (e.g., excitatory-inhibitory, as might be expected if members of a given population had heterogeneous connections involving intermediate interneurons), networks often settled into phase locking that was either stable or unstable, depending on the order of firing of the two cells in the hybrid network. Our results imply that excitatory SCs, but not inhibitory O-LM interneurons, are capable of synchronizing in phase via monosynaptic mutual connections of the biologically appropriate polarity. Results are largely independent of synaptic strength and synaptic kinetics, implying that our conclusions are robust and largely unaffected by synaptic plasticity.


2009 ◽  
Vol 9 (20) ◽  
pp. 8105-8120 ◽  
Author(s):  
A. T. J. de Laat ◽  
R. J. van der A ◽  
M. van Weele

Abstract. Tropospheric O3 column estimates are produced and evaluated from spaceborne O3 observations by the subtraction of assimilated O3 profile observations from total column observations, the so-called Tropospheric O3 ReAnalysis or TORA method. Here we apply the TORA method to six years (1996–2001) of ERS-2 GOME/TOMS total O3 and ERS-2 GOME O3 profile observations using the TM5 global chemistry-transport model with a linearized O3 photochemistry parameterization scheme. Free running TM5 simulations show good agreement with O3 sonde observations in the upper-tropospheric and lower stratospheric region (UTLS), both for short day-to-day variability as well as for monthly means. The assimilation of GOME O3 profile observations counteracts the mid-latitude stratospheric O3 drift caused by the overstrong stratospheric meridional circulation in TM5. Assimilation of GOME O3 profile observations also improves the bias and correlations in the tropical UTLS region but slightly degrades the model-to-sonde correlations and bias of extra-tropical UTLS. We suggest that this degradation is related to the large ground pixel size of the GOME O3 measurements (960×100 km) in combination with retrieval and calibration errors. The added value of the assimilation of GOME O3 profiles compared to stand-alone model simulations lays in the long term variations of stratospheric O3, not in short term synoptic variations. The evaluation of daily and monthly tropospheric O3 columns obtained from total column observations and using the TORA methodology shows that the use of GOME UV-VIS nadir O3 profiles in combination with the spatial resolution of the model does not result in satisfactory residual tropospheric ozone columns.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
B. Mayer ◽  
A. Regler ◽  
S. Sterzl ◽  
T. Stettner ◽  
G. Koblmüller ◽  
...  

2009 ◽  
Vol 48 (27) ◽  
pp. 5127 ◽  
Author(s):  
Chenxia Yun ◽  
Shouyuan Chen ◽  
He Wang ◽  
Michael Chini ◽  
Zenghu Chang

2020 ◽  
Author(s):  
K. Pernold ◽  
E. Rullman ◽  
B. Ulfhake

AbstractUsing 14-20 months of cumulative 24/7 home-cage activity recorded with a non-intrusive technique and a data driven analytical approach, we here provide evidence for the existence of a circannual oscillation (1-2 SD of the mean, on average 65% higher during peak of highs than lows; P=7E-50) in spontaneous activity of male and female C57BL/6 mice held under constant barrier conditions (dark-light cycle 12/12 h (DL), temperature 21±1°C, humidity 40-60%). The periodicity of the season-like oscillation is in the range of 2-4 months (on average 97 days across cohorts of cages) and off-sets also responses to environmental stimuli but does not significantly alter the preference for activity during the dark hours of this nocturnal mouse strain (P=0.11 difference between highs and lows).The significance of this hitherto not recognized slow rhythmic alteration in spontaneous activity is further substantiated by its co-variation with the feeding behaviour of the mice. The absence of coordination within and between cohorts of cages or synchronization to the seasons of the year, suggests that the oscillation of in-cage activity and behavioural responses is generated by a free-running intrinsic oscillator devoid of synchronization with an out-of-cage environmental time-keeper. Since the variation over time has such a magnitude and correlate with the feeding behaviour it is likely that it will impact a range of long term experiments conducted on laboratory mice if left unrecognized.


2005 ◽  
Vol 30 (18) ◽  
pp. 2496 ◽  
Author(s):  
Yohei Kobayashi ◽  
Dai Yoshitomi ◽  
Masayuki Kakehata ◽  
Hideyuki Takada ◽  
Kenji Torizuka
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document