THz-TDS Parameter Extraction via Machine Learning

Author(s):  
N. Klokkou ◽  
J. Gorecki ◽  
V. Apostolopoulos
2021 ◽  
Author(s):  
Gazmend Alia ◽  
Andi Buzo ◽  
Hannes Maier-Flaig ◽  
Klaus-Willi Pieper ◽  
Linus Maurer ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5901
Author(s):  
Min-Ji Park ◽  
Eul-Bum Lee ◽  
Seung-Yeab Lee ◽  
Jong-Hyun Kim

Engineering, Procurement, and Construction (EPC) projects span the entire cycle of industrial plants, from bidding to engineering, construction, and start-up operation and maintenance. Most EPC contractors do not have systematic decision-making tools when bidding for the project; therefore, they rely on manual analysis and experience in evaluating the bidding contract documents, including technical specifications. Oftentimes, they miss or underestimate the presence of technical risk clauses or risk severity, potentially create with a low bid price and tight construction schedule, and eventually experience severe cost overrun or/and completion delays. Through this study, two digital modules, Technical Risk Extraction and Design Parameter Extraction, were developed to extract and analyze risks in the project’s technical specifications based on machine learning and AI algorithms. In the Technical Risk Extraction module, technical risk keywords in the bidding technical specifications are collected, lexiconized, and then extracted through phrase matcher technology, a machine learning natural language processing technique. The Design Parameter Extraction module compares the collected engineering standards’ so-called standard design parameters and the plant owner’s technical requirements on the bid so that a contractor’s engineers can detect the difference between them and negotiate them. As described above, through the two modules, the risk clauses of the technical specifications of the project are extracted, and the risks are detected and reconsidered in the bidding or execution of the project, thereby minimizing project risk and providing a theoretical foundation and system for contractors. As a result of the pilot test performed to verify the performance and validity of the two modules, the design risk extraction accuracy of the system module has a relative advantage of 50 percent or more, compared to the risk extraction accuracy of manual evaluation by engineers. In addition, the speed of the automatic extraction and analysis of the system modules are 80 times faster than the engineer’s manual analysis time, thereby minimizing project loss due to errors or omissions due to design risk analysis during the project bidding period with a set deadline.


2021 ◽  
Vol 11 (16) ◽  
pp. 7550
Author(s):  
Giuseppe Marco Tina ◽  
Cristina Ventura ◽  
Sergio Ferlito ◽  
Saverio De Vito

In the current era, Artificial Intelligence (AI) is becoming increasingly pervasive with applications in several applicative fields effectively changing our daily life. In this scenario, machine learning (ML), a subset of AI techniques, provides machines with the ability to programmatically learn from data to model a system while adapting to new situations as they learn more by data they are ingesting (on-line training). During the last several years, many papers have been published concerning ML applications in the field of solar systems. This paper presents the state of the art ML models applied in solar energy’s forecasting field i.e., for solar irradiance and power production forecasting (both point and interval or probabilistic forecasting), electricity price forecasting and energy demand forecasting. Other applications of ML into the photovoltaic (PV) field taken into account are the modelling of PV modules, PV design parameter extraction, tracking the maximum power point (MPP), PV systems efficiency optimization, PV/Thermal (PV/T) and Concentrating PV (CPV) system design parameters’ optimization and efficiency improvement, anomaly detection and energy management of PV’s storage systems. While many review papers already exist in this regard, they are usually focused only on one specific topic, while in this paper are gathered all the most relevant applications of ML for solar systems in many different fields. The paper gives an overview of the most recent and promising applications of machine learning used in the field of photovoltaic systems.


2020 ◽  
Vol 43 ◽  
Author(s):  
Myrthe Faber

Abstract Gilead et al. state that abstraction supports mental travel, and that mental travel critically relies on abstraction. I propose an important addition to this theoretical framework, namely that mental travel might also support abstraction. Specifically, I argue that spontaneous mental travel (mind wandering), much like data augmentation in machine learning, provides variability in mental content and context necessary for abstraction.


2020 ◽  
Author(s):  
Mohammed J. Zaki ◽  
Wagner Meira, Jr
Keyword(s):  

2020 ◽  
Author(s):  
Marc Peter Deisenroth ◽  
A. Aldo Faisal ◽  
Cheng Soon Ong
Keyword(s):  

Author(s):  
Lorenza Saitta ◽  
Attilio Giordana ◽  
Antoine Cornuejols

Author(s):  
Shai Shalev-Shwartz ◽  
Shai Ben-David
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document