Dynamic Modeling of Three-Dimensional Swimming for Biomimetic Robotic Fish

Author(s):  
Lizhong Liu ◽  
Junzhi Yu ◽  
Long Wang
2017 ◽  
Vol 17 (2) ◽  
pp. 825-833 ◽  
Author(s):  
Seda Yetkin ◽  
Gonca Ozmen Koca ◽  
Mustafa Ay ◽  
Zuhtu Hakan Akpolat ◽  
Cafer Bal

Author(s):  
Paul Phamduy ◽  
Raymond Le Grand ◽  
Maurizio Porfiri

Biomimetic robotic fish exhibits have been an attraction for many visitors in informal learning settings. Although these exhibits are entertaining to the visitors, they generally lack interactive components to promote participants’ engagement. Interactivity in exhibits is an increasing trend in public educational venues, and is a crucial factor for promoting science learning among participants. In this work, we propose a novel platform for enhancing participant interaction through a robotic fish controlled by a touch screen device. Specifically, we develop and characterize a robotic fish based on a multi-link design with a pitch and buoyancy control system for three-dimensional biomimetic swimming. Performance tests are conducted to assess the robotic fish speed.


2013 ◽  
Vol 39 (11) ◽  
pp. 1914 ◽  
Author(s):  
Zheng-Xing WU ◽  
Jun-Zhi YU ◽  
Zong-Shuai SU ◽  
Min TAN

2008 ◽  
Vol 51 (5) ◽  
pp. 535-549 ◽  
Author(s):  
JunZhi Yu ◽  
Long Wang ◽  
Wei Zhao ◽  
Min Tan

Author(s):  
Liang Li ◽  
Xingwen Zheng ◽  
Rui Mao ◽  
Guangming Xie

Author(s):  
Yuanrong Chen ◽  
Jingfen Qiao ◽  
Jincun Liu ◽  
Ran Zhao ◽  
Dong An ◽  
...  

Author(s):  
Feitian Zhang ◽  
Fumin Zhang ◽  
Xiaobo Tan

Gliding robotic fish, a new type of underwater robot, combines both strengths of underwater gliders and robotic fish, featuring long operation duration and high maneuverability. In this paper, we present both analytical and experimental results on a novel gliding motion, tail-enabled three-dimensional (3D) spiraling, which is well suited for sampling a water column. A dynamic model of a gliding robotic fish with a deflected tail is first established. The equations for the relative equilibria corresponding to steady-state spiraling are derived and then solved recursively using Newton's method. The region of convergence for Newton's method is examined numerically. We then establish the local asymptotic stability of the computed equilibria through Jacobian analysis and further numerically explore the basins of attraction. Experiments have been conducted on a fish-shaped miniature underwater glider with a deflected tail, where a gliding-induced 3D spiraling maneuver is confirmed. Furthermore, consistent with model predictions, experimental results have shown that the achievable turning radius of the spiraling can be as small as less than 0.4 m, demonstrating the high maneuverability.


Sign in / Sign up

Export Citation Format

Share Document