An assembly sequence generation of a product family for robot programming

Author(s):  
Kimoon Lee ◽  
Sungmoon Joo ◽  
Henrik I. Christensen
Author(s):  
Ulises Zaldivar-Colado ◽  
Samir Garbaya

In this paper, we present the virtual environment of assembly sequence generation of a product at the design stage. The interaction technique developed for the manipulation of virtual parts includes visual and haptic feedback limited to force sensation in the fingertips and weight and inertia parts sensation. At this stage of development, the parts and subassemblies have kinematics behaviour in the virtual scene. We present some guidelines for modeling a generic virtual environment for performing assembly tasks. Virtual parts modeling and connections modeling is based on characteristics of real parts and connections. The mating phase of assembly is based on the Snap-Fitting technique, which is improved by the addition of vectors in the symmetry axis of virtual parts. An XML modeling allows the environment to be generic and supporting different products.


2015 ◽  
Vol 35 (4) ◽  
pp. 309-316 ◽  
Author(s):  
M. V. A. Raju Bahubalendruni ◽  
Bibhuti Bhusan Biswal ◽  
Manish Kumar ◽  
Radharani Nayak

Purpose – The purpose of this paper is to find out the significant influence of assembly predicate consideration on optimal assembly sequence generation (ASG) in terms of search space, computational time and possibility of resulting practically not feasible assembly sequences. An appropriate assembly sequence results in minimal lead time and low cost of assembly. ASG is a complex combinatorial optimisation problem which deals with several assembly predicates to result an optimal assembly sequence. The consideration of each assembly predicate highly influences the search space and thereby computational time to achieve valid assembly sequence. Often, the ignoring an assembly predicate leads to inappropriate assembly sequence, which may not be physically possible, sometimes predicate assumption drastic ally raises the search space with high computational time. Design/methodology/approach – The influence of assuming and considering different assembly predicates on optimal assembly sequence generation have been clearly illustrated with examples using part concatenation method. Findings – The presence of physical attachments and type of assembly liaisons decide the consideration of assembly predicate to reduce the complexity of the problem formulation and overall computational time. Originality/value – Most of the times, assembly predicates are ignored to reduce the computational time without considering their impact on the assembly sequence problem irrespective of assembly attributes. The current research proposes direction towards predicate considerations based on the assembly configurations for effective and efficient ASG.


2019 ◽  
Vol 40 (2) ◽  
pp. 319-334 ◽  
Author(s):  
Yanru Zhong ◽  
Chaohao Jiang ◽  
Yuchu Qin ◽  
Guoyu Yang ◽  
Meifa Huang ◽  
...  

Purpose The purpose of this paper is to present and develop an ontology-based approach for automatic generation of assembly sequences. Design/methodology/approach In this approach, an assembly sequence planning ontology is constructed to represent the structure and interrelationship of product geometry information and assembly process information. In the constructed ontology, certain reasoning rules are defined to describe the knowledge and experience. Based on the ontology with reasoning rules, the algorithm for automatically generating assembly sequences is designed and implemented. Findings The effectiveness of this approach is verified via applying it to generate the assembly sequences of a gear reducer. Originality/value The main contribution of the paper is presenting and developing an ontology-based approach for automatically generating assembly sequences. This approach can provide a feasible solution for the issue that mathematics-based assembly sequence generation approaches have great difficulty in explicitly representing assembly experience and knowledge.


Sign in / Sign up

Export Citation Format

Share Document