Design, Modeling and Control of a Spherical Autonomous Underwater Vehicle for Mine Exploration

Author(s):  
Ramon A. Suarez Fernandez ◽  
E. Andres Parra R. ◽  
Zorana Milosevic ◽  
Sergio Dominguez ◽  
Claudio Rossi
2010 ◽  
Vol 44 (2) ◽  
pp. 19-36 ◽  
Author(s):  
Bruno Ferreira ◽  
Aníbal Matos ◽  
Nuno Cruz ◽  
Miguel Pinto

AbstractIn this work, we address the modeling and control problems in the domain of underwater vehicles. We focus on a prototype of an autonomous underwater vehicle. Although the work presented here is applied to a particular vehicle with four controllable degrees of freedom, the method may be easily extended to several submerged bodies. In the engineering area, modeling of systems is done frequently, as it yields a mathematical translation of their behavior. Since models can become an important tool to solve problems related to its motion or even to the design of controllers, we obtain a model with six degrees of freedom for such a vehicle.Robust control of underwater vehicles is an area in which many efforts were applied over the last two decades. However, due to nonlinear dynamics, it may be hard to design robust controllers that yield the expected behavior, and there is no general procedure to develop them. Here, we propose an approach that combines nonlinear controllers based on the deduced model and on the Lyapunov theory to control the velocities of the vehicle with linear controllers that control the vehicle’s position. We derive control laws to perform several maneuvers, both in the vertical and the horizontal planes, in a decoupled way, which is made possible through the configuration of thrusters. Finally, we present realistic simulations and experimental results that validate the proposed approach in the definition of the control laws.


2009 ◽  
Vol 43 (2) ◽  
pp. 33-47 ◽  
Author(s):  
Hunter C. Brown ◽  
Ayoung Kim ◽  
Ryan M. Eustice

AbstractThis article provides a general overview of the autonomous underwater vehicle (AUV) research thrusts being pursued within the Perceptual Robotics Laboratory (PeRL) at the University of Michigan. Founded in 2007, PeRL's research centers on improving AUV autonomy via algorithmic advancements in environmentally based perceptual feedback for real-time mapping, navigation, and control. Our three major research areas are (1) real-time visual simultaneous localization and mapping (SLAM), (2) cooperative multi-vehicle navigation, and (3) perception-driven control. Pursuant to these research objectives, PeRL has developed a new multi-AUV SLAM testbed based upon a modified Ocean-Server Iver2 AUV platform. PeRL upgraded the vehicles with additional navigation and perceptual sensors for underwater SLAM research. In this article, we detail our testbed development, provide an overview of our major research thrusts, and put into context how our modified AUV testbed enables experimental real-world validation of these algorithms.


Sign in / Sign up

Export Citation Format

Share Document